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Basic Statistics Reference
Understanding basic statistics is essential for conducting proper analysis of physical data. This doc-

ument provides a reference on the concepts of probability, mean, variance, and curve-fitting.

Mean and Variance of a Probability Distribution

A probability distribution can be described by a probability function which assigns a probability p(x)
to each outcome x of some event. Probability distributions can either be continuous or discrete. A
continuous distribution has outcomes x with probablities p(x), while a discrete distribution has outcomes
xi with probabilities pi (i is an integer label). Formulas are given here for the discrete case; to convert
to the continuous case, replace

xi → x, pi → p(x),
∑
i

→
∫
dx.

Expected Value Let f(x) be a function of the outcome of some probabilistic event. The expected value
E(f) of f(x) is the average value of the quantity f(x) expected over many iterations. The formula is

E(f) =
∑
i

f(xi) pi.

Mean The mean µ of a probability distribution is the expected value of the outcome, which is simply
its average value. The formula is

µ = E(x) =
∑
i

xi pi

Variance The variance σ2 of a probability distribution is a measure of its “spread-out-ness”. The
formula is

σ2 = E((x− µ)2) =
∑
i

(xi − µ)2 pi = E(x2)− E(x)2.

Standard Deviation Standard deviation σ is the square root of the variance, so σ =
√
σ2.

Population Distribution and Sample Distribution

Suppose we know that an experiment has a set of measurement outcomes x and a probability distribution
p(x) for obtaining those outcomes. The underlying, idealized, probability distribution p(x) is called the
population distribution. The mean and variance associated with p(x) are called the population mean and
population variance.

Now suppose we perform the experiment N times, obtaining outcomes x1, x2, . . . , xN . We say that
the data points xi are “sampled from” the population distribution. The distribution of these values is
called the sample distribution. When N is large, the sample distribution should closely approximate the
population. When N is small, the sample outcomes can be less reliable. However, the sample values can
always be used to approximate the population mean and population variance. Formulas are given in the
following section.
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Mean and Variance of a Data Set

A data set is described by a sequence xk = x1, x2, . . . , xN of N outcome values for some measurement.
The proper way to analyze a data set is usually to assume it was sampled from some idealized underlying
population distribution p(x). The sample values can then be used to reconstruct information about the
underlying distribution.

Sample Average Value Let f(x) be a function of the outcome of the measurement. The sample
average f̄ of f(x) is the average value of f(x) over the measurement trials. The formula is

f̄ =
1

N

N∑
k=1

f(xk).

Sample Mean The sample mean x̄ of a data set is the average value of the outcome over the trials.
The formula is

x̄ =
1

N

N∑
k=1

xk.

Sample Variance The sample variance s2 of a data set is a measure of its “spread-out-ness”. The
formula is

s2 =
1

N − 1

N∑
k=1

(xk − x̄)2.

Standard Deviation Standard deviation s is the square root of the variance, so s =
√
s2.

Samples and Population Each of the above sample values approximates the corresponding population
value when many trials are taken. That is

f̄ ≈ E(f), x̄ ≈ µ, s2 ≈ σ2,

with the approximation converging for large N .

Variance of the Mean Taking the average of many values increases certainty that the value is accurate.
If the sample mean from N trials is calculated repeatedly, it will have a smaller variance than the samples
themselves. The formula is

σ2
x̄ =

1

N
σ2 ≈ 1

N
s2.

Normal Distribution

A normal distribution is a probability distribution such that p(x) is a normalized Gaussian. The normal
distribution with standard deviation σ and mean µ is given by

p(x) =
1√
2πσ

e
−(x−µ)2

2σ2 .

For a normal distribution, there is approximately a 68%, 95%, and 99.7% probability of a value lying
within 1, 2, and 3 standard deviations of the mean, respectively. In physics, unknown distributions are
often assumed to be approximately normal. Normal dists also arise in math by the central limit theorem.
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Curve Fitting

Consider a set of N data points (xk, yk), and a function f(x). How well does the curve f(x) fit the data?

Chi-Squared with Sigmas If the standard deviation σyk of each data point is known, then one should
quantify the goodness-of-fit by the quantity

χ2 =

N∑
k=1

(f(xi)− yi)2

σ2
yk

.

In this case the value χ2 has an absolute meaning.

Chi-Squared without Sigmas If the standard deviations of the data points are not known, then one
can quantify the goodness-of-fit by

χ2 =
N∑
k=1

(f(xi)− yi)2.

In this case χ2 has only a relative meaning. Sometimes, using an alternative denominator could restore
the absolute meaning to the value, but more details about the measurement would have to be known.

Reduced Chi-Squared In the either of the above cases, the quantity

χ̄2 =
χ2

Neff

is called the reduced chi-squared, where the effective number of degrees of freedom Neff is N minus the
number of parameters that were used to fit f(x) to the data. A smaller value of χ̄2 indicates a closer fit
to the data. When χ2 is calculated with the standard deviation values, χ̄2 has an expected value of 1.

Fitting by Chi-Squared Minimization Consider a data set (xk, yk), and a function f(~p, x) which
depends on a set of parameters ~p. This function is called a model for the data. The value χ2(~p) represents
the goodness of fit as a function of the model parameters. Various algorithms can be used to find a set of
parameters ~p0 which exactly or approximately minimizes χ2 for the model. Often f(~p0, x) is then called
a best fit curve for the model. This name is slightly misleading to students. Once a suitably well-fitting
set of parameters has been found, it’s not particularly important whether they are “best” or not; what
matters is how well the resulting curve fits the data.

Uncertainty in Fit Parameters Suppose you find best fit parameters ~p0 for a model by a process of
chi-squared minimization. What is the uncertainty in these parameters? Sometimes, the fitting algorithm
used will output an uncertainty along with the value. This can be very useful, but make sure to know
where that number comes from and what it means, as context can vary. Alternatively, you can get a
quick estimate of the uncertainty by hand: change each parameter by hand until you observe a substantial
change in the fit (you can do this by χ2 or by eye) — the amount of parameter change needed to have
an effect gives you a rough estimate of the uncertainty in the parameter.

3


