
2018 SCHINDLER UCSC PHYS 133

AC Circuits and Impedance

In basic DC circuits, along with Kirchoff’s laws, the fundamental equation is DC Ohm’s Law, V = IR,
relating the voltage and current across a resistor.

In AC circuits, this gets generalized to AC Ohm’s Law, V = Iz. It looks like the DC version, and
plays a similar role, but actually more is going on here. In this context V, I, z are all complex numbers.

You’ll see why below.

Resistors, Capacitors, Inductors

The three basic (passive, linear) ideal electronic components are the resistor, capacitor, and inductor. At
any given time, each can have an instantaneous voltage V (t), and an instantaneous current I(t), across
it. The relation between the instantaneous voltages and currents are determined by the electromagnetic
physics of the components:

V (t) = I(t)R

C
dV(t)

dt
= I(t)

V (t) = L
dI(t)

dt

For AC circuits, we will assume all voltages are oscillating sinusoidally, and these will turn into equations
for the impedance.

Complex Exponentials and Oscillation

Oscillations. An oscillating signal is any signal of the form

y(t) = A cos(ωt+ δ),

which is an arbitrary sinusoidal function. A is called the amplitude, and δ is called the phase shift.
Due to Euler’s identity eiθ = cos θ + i sin θ, this signal can also be written as

y(t) = Re
(
Aeiδ eiωt

)
= Re

(
Y eiωt

)
where we have defined the complex number Y = Aeiδ. Y is called the complex amplitude of the oscillation
y(t), and encodes both the amplitude and the phase by using a single complex number to represent two
real numbers. Indeed, |Y | = A and φY = δ.

To simplify circuit analysis, we can treat all oscillations as complex, taking the real part only at the
end. (This is possible when solving any system of linear differential equations with real coefficients.) This
lets us forget about the instantaneous quantities y(t), and work with the complex amplitudes Y .
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Complex numbers. Recall that any complex number has the forms

z = Re(z) + i Im(z)

= |z| eiφz

where

|z|2 = Re(z)2 + Im(z)2 φz = tan−1
(
Im(z)
Re(z)

)
.

You can think of z as a vector in a plane, where the x-axis is the real part and the y-axis is the imaginary
part. The magnitude |z| is the length of the vector, and the phase φz (also called the argument Arg(z))
is the angle from the +x-axis.

The complex conjugate of z is defined by z∗ = Re(z)− i Im(z). It is useful to know that z∗z = |z|2.

AC Circuits

By an AC circuit, we mean a circuit where everything is oscillating at a fixed frequency f . This corre-
sponds to an angular frequency ω = 2πf . Therefore, we assume that all voltages and currents in the
circuit have the form

Vk(t) = Vke
iωt Ik(t) = Ike

iωt

where k is a label for the voltages and currents at different spots. The quantities Vk and Ik are complex
amplitudes (NOTE: in this notation Vk and Vk(t) are two different things, and the same goes for I). Each
voltage and current has a different complex amplitude, but all have the same frequency of oscillation.
The complex amplitudes ultimately tell us the amplitude and phase shift of the real oscillation.

Plugging the assumed form for V (t) and I(t) into the above equations for R, L, and C, we can cancel
out the exponential factors, which leaves an equation for the complex amplitudes:

V = I R

V = I ( 1
iωC )

V = I (iωL)

Each of these equations has the form
V = Iz,

where all three quantities are complex numbers (and not functions of time). We call this equation
AC Ohm’s Law . It states that, in AC circuits, the complex amplitudes of voltage and current oscillation
across a (passive, linear) component are proportional. The constant of proportionality z is called the
impedance (also sometimes called the complex impedance for emphasis). Notice that in general, the
impedance of a component depends on frequency.
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Impedance

We have just deduced the complex impedances for an ideal resistor, capacitor, and inductor:

zR = R freq independent

zC =
1

iωC
blocks lo f ... passes hi f

zL = iωL passes lo f ... blocks hi f

It is not hard to show (from Kirchoff’s laws) that impedances combine just like DC resistances. In
particular:

series parallel

z = z1 + z2
1
z = 1

z1
+ 1

z2

In this way, more complicated functions z(f) can be built up from the basic impedances.
In general, every passive circuit element will have some impedance z(f), which will vary as a function of

frequency. For circuit elements containing a combination of resistance, capacitance, and inductance, z(f)
may be a complicated function. This impedance can be measured by measuring the complex amplitudes
V and I across a circuit element, since z = V/I.

Example. A resistor in series with an inductor has an impedance z = R + iωL. It follows that the
magnitude is |z| =

√
R2 + ω2L2 and that the phase is φz = tan−1(ωLR ). All three quantities are functions

of frequency f , where ω = 2πf .
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Phys 133 Experiment

The circuit depicted above can be used to measure the impedance of the circuit element labelled z.
Rt is a known resistance (t stands for “test”), and for simplicity let’s denote Rt = R for now.

In its default mode, the oscilloscope screen will display graphs of V1(t) and V2(t). For this experiment,
change the scope setting to CH2 INVERT ON; now the scope will display V1(t) and −V2(t) (note the negative
sign, meaning that the graph is flipped upside down). This is not necessary, but it is convenient.

V1(t) is the voltage across the unknown box, and since −V2(t) = I(t)R, the function −V2(t) is just
a vertically stretched version of the current. Therefore you can visualize the scope’s yellow curve as the
voltage across the box, and the blue curve as the current through the box.

From the functions V (t) displayed, we want to extract the complex amplitudes of oscillation. Using
the scope’s MEASURE menu, we have the ability to measure the real amplitude of each oscillation, and the
relative phase difference between the two oscillations. This is enough to extract the impedance.

Denote the complex amplitudes by V1, V2, and I. By definition, z = V1/I. But I = (−V2)/R.
Therefore

z =
V1R

(−V2)
=
|V1|R
| − V2|

ei(φ(V1)−φ(−V2)
) =

|V1|R
| − V2|

eiδ

where δ is defined as the relative phase difference between V1(t) and −V2(t).
We can directly measure |V1|, |−V2|, and δ using the scope, and directly measure R using an ohmmeter,

so the formula

z =
|V1|R
| − V2|

eiδ

experimentally defines the complex impedance. In particular

|z| = |V1|R
| − V2|

φz = δ

The preceding method determines z at a fixed frequency. By sweeping through a range of frequencies,
one can map out the function z(f).
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