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The goal is to find the solutions of Maxwell’s equations in the presence of some
configuration of conductors. The setup of the problem is assumed to have symmetry
under translation in the z-direction. Solutions are expressed via a dispersion relation
k(ω) for traveling waves and a formula for the associated fields.

Maxwell’s Equations
Begin with the sourceless Maxwell equations in vacuum (for linear dielectric

media replace c = 1/
√
µ0ε0 with c′ = c/n = 1/

√
µε). These imply the wave

equation for all components of the fields.

∇∇∇ · E = 0 ∇∇∇ ·B = 0 (1)

∇∇∇× E = −∂B
∂t

∇∇∇×B = − 1

c2
∂E
∂t

(2)

(∇2 − 1

c2
∂2

∂t2
)

{
E
B

}
= 0 (3)

Assume the fields go as A = Aeikze−iωt and break vectors up into longitudinal
and transverse components, where the coefficients A = At + ẑAz are complex,
so that

E(x, t) = [Et(x, y) + ẑEz(x, y)]eikze−iωt (4)

B(x, t) = [Bt(x, y) + ẑBz(x, y)]eikze−iωt (5)

∇∇∇ =∇t∇t∇t + ẑ
∂

∂z
(6)

Maxwell’s equations and the wave equation become

∇t∇t∇t · Et + ikEz = 0 (7)

∇t∇t∇t ·Bt + ikBz = 0 (8)

∇t∇t∇t × Et = iωBzẑ (9)

∇t∇t∇t ×Bt = −i ω
c2
Ezẑ (10)

ikEt + iω(ẑ×Bt) =∇t∇t∇tEz (11)

ikBt − i ωc2 (ẑ× Et) =∇t∇t∇tBz (12)

[∇2
t + (

ω2

c2
− k2)]

{
E
B

}
= (∇2

t + γ2)

{
E
B

}
= 0 (13)

The equations for the fields have reduced to equations for the coefficients.
Eqns (7,8) are the divergence equations. Eqns (9,11) [(10,12)] come from the
curl of E [B] equation. Eqns (9,10) are exactly the z-component of the curl
equations. Meanwhile (11,12) are obtained from {ẑ × [Eqn 2]}. Note each
term of {(∇t∇t∇t + ẑ ∂

∂z
)× (Et + ẑEz)} is either (⊥ z), (‖ z), or zero.

Equations (11,12) can be decoupled, so long as (ω
2

c2
− k2) 6= 0, by the

operations {[Eqn 11] − (ω
k
ẑ × [Eqn 12])} and {[Eqn 12] + ( ω

kc2
ẑ × [Eqn 11])},
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yielding

Et =
i

(ω
2

c2
− k2)

[k∇t∇t∇tEz − ω(ẑ×∇t∇t∇tBz)] (14)

Bt =
i

(ω
2

c2
− k2)

[k∇t∇t∇tBz −
ω

c2
(ẑ×∇t∇t∇tEz)] (15)

If Ez,Bz aren’t both zero, and (ω
2

c2
− k2) 6= 0, then these equations (14,15)

show that the fields are completely determined by specifying Ez and Bz. The
case Ez = Bz = 0 implies ω = ck leaving (14,15) indeterminate.

These forms (7-15) of Maxwell’s equations, when combined with appropri-
ate boundary conditions, determine the mode structure of waveguides.

Boundary Conditions at Perfect Conductor
Within the volume of a perfect (σ = ∞) conductor, for time-varying (or

static) fields, Ec = Bc = 0. The existence of surface charges and currents
at the conductor’s surface allows the existence of E⊥ and B‖ just outside the
surface, thus rendering two of the canonical boundary conditions not useful.
The two remaining (useful) conditions on the fields E and B external to the
conductor, with Ec = Bc = 0, are

(n̂× E)|S = 0 (16)

(n̂ ·B)|S = 0 (17)

In the case of an infinitely long conductor extending symmetrically in the
z-direction, n̂ is everywhere normal to ẑ. Then Eqn (16) immediately implies
Ez|S = 0.

If, additionally, the fields are of the form (4,5), they must satisfy Maxwell’s
equations in the form (7-13), and Eqn (12) in particular. The boundary condi-
tion on Bz is derived from {(n̂·[Eqn 12])|S} which becomes {ik(n̂·Bt)|S+i ω

c2
ẑ·

(n̂ × Et)|S = (n̂ · ∇t∇t∇tBz)|S = 0} using (16,17) and some vector manipulation.
Thus the boundary condition on Bz boils down to ∂Bz

∂n
|S = 0.

Therefore the appropriate boundary conditions on the z-components of the
fields at a perfect conductor, for the z-symmetric wave problem, are

Ez|S = 0 (18)

∂Bz

∂n

∣∣∣∣
S

= 0 (19)

which can be identified as the homogeneous Dirichlet and Neumann boundary
conditions, respectively.

Satisfying (18,19) does not a priori satisfy the full set of boundary condi-
tions (e.g. the transverse part). In general, all boundary conditions should
be checked against a solution for consistency. However, for both TEM and
TE/TM modes we obtain Et ⊥ Bt. For TEM modes, making the conducting
surface an equipotential in the corresponding electrostatic problem ensures all
BC’s are met. Presumably (14,15) together with (18,19) similarly imply that
all BC’s are met for the TE/TM modes.
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TEM Waves
TEM waves are solutions characterized by

Ez = Bz = 0

In this case Maxwell’s equations (7-10) become

∇t∇t∇t · Et = 0 ∇t∇t∇t × Et = 0 (20)

∇t∇t∇t ·Bt = 0 ∇t∇t∇t ×Bt = 0 (21)

which allows us to write

Et = −∇t∇t∇tφ(x, y) where ∇2
tφ = 0 (22)

Using (22), the wave equation (13) implies

ω = c|k| (23)

since ∇2
tEt = −∇2

t∇t∇t∇tφ = −∇t∇t∇t∇2
tφ = 0 by interchanging partial derivatives.

Then Eqn (12) implies

Bt =
±1

c
ẑ× Et (24)

Notice that (23) and (24) are identical to plane waves in free space. The minus
sign is for negative k values.

In summary, when TEM waves are supported, there is one TEM “mode”
which supports waves at all frequencies with trivial dispersion, since ω = ck.
The fields are specified by the potential φ which satisfies ∇2

tφ = 0 for some
relevant boundary conditions. But the allowed frequencies and the dispersion
relation do not depend on φ. TEM waves are supported when the geometry
and boundary conditions admit a non-trivial solution of Laplace’s equation.

Plane waves in free space are an example of TEM waves. For plane waves,
the potential solves ∇2

tφ = 0 but doesn’t adhere to any physically meaningful
boundary conditions and is unbounded at infinity. This corresponds do the
fact that waves of truly infinite extent are clearly non-physical.

TEM Recipe

1. The dispersion relation is ω = c|k|.

2. Calculate φ from ∇2
tφ = 0 with electrostatic boundary conditions such

that the (2D slice of) conducting surfaces are equipotential.

3. The field coefficients are given by

Ez = Bz = 0

Et = −∇t∇t∇tφ

Bt =
±1

c
ẑ× Et
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TM/TE Waves
TM/TE waves are solutions with longitudinal field components. Find the

modes by recognizing that each field component must satisfy the wave equation
(13), so in particular (13) applies to the longitudinal Ez and Bz. Fortunately,
if Ez and Bz satisfy the wave equation (13) and the transverse fields are spec-
ified by (14,15), then the transverse components automatically also satisfy
(13), which can be verified by interchanging partial derivatives. Note that an
eigenvalue γ2 = 0 renders (14,15) indeterminate.

Thus the problem of TM/TE waves is reduced to the problem of finding
fields Ez and Bz satisfying the wave equation (13) and the boundary conditions
(18,19). The dispersion relations are then dictated by the corresponding wave
equation eigenvalues, and the transverse field components are determined by
(14,15). The fields produced by this recipe automatically satisfy the rest of
Maxwell’s equations and the rest of the boundary conditions.

To simplify the calculations, we find separate solutions where either Ez = 0
or Bz = 0, called the TE and TM solutions, and linearly combine them after
to get a general solution.

TM/TE Recipe

1. Solve the 2D Helmholtz equation for either TM or TE conditions, ob-
taining the eigenvalues γ2 and the eigenfunctions ψ.

TM TE
Ez = ψ Bz = 0 Ez = 0 Bz = ψ

ψ|S = 0 ∂ψ
∂n

∣∣
S

= 0

(∇t∇t∇t
2 + γ2)ψ = 0

2. The dispersion relation for each eigenvalue γ2 is

k2 =
ω2

c2
− γ2

3. The transverse field coefficients for each eigenvalue are given by (14,15).

Cylindrical Cavities
Cylindrical cavities formed by putting conducting endcaps on a waveguide

can be treated with the same formalism. To get cavity solutions simply form
standing waves by superimposing traveling wave solutions. The extra bound-
ary conditions at the caps then put an additional restriction on k.

In effect this means that to get the modes one just replaces the exponential
factor with a sinusoidal factor and adds the new boundary conditions, then
breaks the result up into traveling components to get the fields.
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Finite Conductivity
To approximately find the fields near the surface of a real conductor with

finite but large conductivity σ, we essentially make a first order correction to
the case of the perfect conductor. For the perfect conductor we had the interior
fields Ec = Bc = 0, surface charge ΣΣΣ, surface current K, and thus exterior
fields with E‖ = B⊥ = 0, with the other field components being allowed in
accordance with the surface sources.
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