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ENTROPY

Its perpetual increase is at the center of almost all everyday phenomena.
It cools our coffee.
It kills our pets.

It's the enemy of demons everywhere.

But what the hell is it??
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The main problem is that no one can agree on what it means.!

Gibbs says it's S = — [dI" plog p.

Boltzmann says it's S = klog .

Gibbs says it's S = — [dI peg log peg.

Boltzmann says it's S = — [dzdp P(z,p)log P(z,p).

von Neumann says it's S = — Tr plog p.
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von Neumann says it's S = — > p; log(p:/Vi).

S = S(x(t))

Classical Textbooks HEP

LWe're talking physics, not information theory. Informational things like Rényi entropies,
conditional entropies, or f-divergences, are well understood and not part of this confusion.
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The main problem is that no one can agree on what it means.
» Open Quantum Systems says it's S = S(p(t))
(von Neumann entropy of the microscopic state).

» Equilibrium Statistical Mechanics says it's S = S(7(t))
(von Neumann entropy of the micro-/canonical/etc ensemble).

» Classical systems equilibration says it's S = klog W
(number of microstates in a macrostate).

» Isolated quantum equilibration says it's an observable entropy
with the system viewed through a measurement M.

S = S(x(t))

0Qs Classical Textbooks HEP

LWe're talking physics, not information theory. Informational things like Rényi entropies,
conditional entropies, or f-divergences, are well understood and not part of this confusion.



The main problem is that no one can agree on what it means.!

» Isolated quantum systems say it's the diagonal entropy.
» Isolated quantum systems say it's the observable Shannon entropy.
» Isolated quantum systems say it's the observational entropy.

» Some prefer the entanglement entropy.

S = S(x(t))

Classical Textbooks HEP

LWe're talking physics, not information theory. Informational things like Rényi entropies,
conditional entropies, or f-divergences, are well understood and not part of this confusion.
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The main problem is that no one can agree on what it means.!

» Quantum thermodynamics says it's
AS = D(p(t) [l ps(t) @ TB(1)).

» Stochastic thermodynamics says it's
AS = —BA(Ez) + A(Sz — log pz).

» Thermodynamics says it’s
dS =dQ/T.

» And the list goes on...

S = S(x(t))

0oQSs Classical Textbooks HEP

1We're talking physics, not information theory. Informational things like Rényi entropies,
conditional entropies, or f-divergences, are well understood and not part of this confusion.

36



The main problem is that no one can agree on what it means.!

» Nearly all the entropies discussed have at some point been treated as
“the” entropy of statistical thermodynamics, leading to a century of
debate about which one is “correct” or “fundamental”.

» FEach one looks correct in some regime.

» Which one could it be?

S = S(x(t))

0oQSs Classical Textbooks HEP

LWe're talking physics, not information theory. Informational things like Rényi entropies,
conditional entropies, or f-divergences, are well understood and not part of this confusion.
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Can any of these be the general definition of entropy?

(a) Equilibrating box of gas. (b) Same, but quantum. (c) Same, but with gravity.

(d) Remaining near equilibrium (e) High entropy for spatial DOFs
while piston slowly moves. but not for velocity DOFs.

Some of the most common candidates:

X von Neumann entropy of microstate S(p(t)) A,B

X von Neumann entropy of equilibrium ensemble S(r(t)) A,B
X Boltzmann entropy log W B

X Shannon observable entropy Ha(p) A,C

X Observational entropy Sa(p) C

And the rest fail too, or are not even defined in all these cases.



A general entropy should:

» Make the 2nd law of Thermodynamics = Law of Entropy Increase,
for all physical manifestations of 2nd law.

» Allow one to to prove entropy increase under suitable assumptions.

» Connect entropy increase to physical consequences, like “heat flows from
hot to cold bodies” or “a gas fills its container”.

- Gas in a box expands to uniformly fill its container.

- Heat flows from hot to cold bodies, in both classical and quantum systems.
- Glass does not unshatter, but oil separates when mixed with water.

- An isolated quantum pure state thermalizes with respect to observables.

- An open quantum system thermalizes at the level of its density matrix.

- Thermodynamic cycles, both classical and quantum, have limited efficiency.
- A piston does piston things with gas and work.

- A chemical reaction proceeds spontaneously.

Not all systems equilibrate. But one should be able to prove it “where appropriate”.
The proofs should help clarify precisely when equilibration does/doesn’t occur.

Increase of a quantity called entropy is not enough to be a 2nd Law.
It has to connect to the physics.
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In this talk I'll give a general entropy definition that has

all of the entropies discussed earlier as special cases or limits,
explain the motivations behind it, and say what it could suggest
about 2nd laws and equilibration.
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Balls and Boxes



A ball is in a box.
The box has a left and right side.
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Now | hide the ball.
But | give you the probability that | put it in the left or right.

If you tell me ball is definitely on the right, | have uncertainty log Vg about
where precisely the ball is. Telling me the smaller box gives me more info.
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How much uncertainty do | have about...

Which box is the ball in? Where is the ball?
— >, pilogp; — > ;pilogpi+> . pilogV;
Shannon observable entropy Observational entropy

Information about the outcome vs. information about the state.
OE = uncertainty about which box + uncertainty given the particular box
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Refining the measurement — better information about where the ball is.

CPTP monotonicity of relative entropy — coarser/finer monotonicity of OE

Sam(p) > Sm(p)

(aka data processing inequality)

13/36



If the location of the ball has inherent uncertainty (finite size of ball),
the finest possible measurements reveal this minimum amount.

Observer's uncertainty (OE) > inherent uncertainty in state (S(p) = —plog p)

Swm(p) = S(p)

Optimal measurements (p eigenbasis) reveal von Neumann entropy.
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Now | give you some additional info by telling you a constraint.

(Energy conservation, charge conservation, restriction to a subspace...)

“Ball moves
along rail.”

Learning “right box" fixes the location more than before —
recalculate volumes in light of the constraint.

Given both constraint info + measurement outcome probabilities,
new uncertainty: — >, p;logp; + >, pi log V/

Combining constraints + measurement makes this entropy unification possible.
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Formal Definition



The state of the system is p.

| have two pieces of “coarse information” about p:

» | know it obeys some particular constraint Tr(pX) = 0,

» | know the outcome statistics p; = Tr(pM;) of a POVM M = (M;);.

How much uncertainty do | have?

First, | estimate p using the maximum entropy principle, getting “prior” 7.

» 7 = MaxEnt state given the constraint (maximum vN entropy)

This leaves me with uncertainty S(7) = — Tr 7 log T about the state.
Next | calculate my prior estimate ¢; = Tr(M;7) of the M outcomes.

In classical information theory, the informational value (in bits saved) of
learning p;, when previously | had the prior g;, is D(p||q).

So gaining knowledge of M info decreases my uncertainty to

S (p) = S() = Du(p|l 7).

16

36



For example:

The state of the system is p = |3)(3].
Hamiltonian is H = >, k|k)k|.

You tell me the constraint (H) = E.

| make my best (maxent) guess at p, which is 7 = 67§H with some .
Current uncertainty S(7) = log Z + SE.

You give me data of the measurement M = (|k)k|)x (energy eigenbasis).

My guess would have been g, = Tr(7Il) = e 553 /7.
The actual data is pr = Tr(plly) = k3.
| gained Dus(pl|7) = D(p|lq) = —log g3 bits of information.

My total uncertainty is

Sii(p) =log Z + BE — Du(plle ?"/2)
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Definition. The entropy of state p, coarse-grained by measurement M,
with prior 7, is

Su(p) = S(r) = Dum(pll7).
This is missing information given both measured info and constraint info.

Prior = MaxEnt state for constraints on the system.
Measured RE: Dys(p||7) = D(p|| q) where py = Tr(Mzp) and ¢z = Tr(MzT).

“Entropy = Missing Information.” Compare
H(p) =log N — D(p||1/N)
S(p) = logd — D(p||1/d)
Sar(p) = logd — Das(p||1/d).

These implicitly assume prior ignorance, with uniform prior 1/d.

Explicitly,
Tr(M,p)

Du(pllr) = Z Tr(Mgzp) log Tr(Mo7)
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Equivalent definition. The above entropy is equivalent to
T pz
S = — E z 10g —,
1 (p) - Pz 108 Ve

which is also the Shannon plus mean Boltzmann entropy

St(p) = H(p) +>_, palog Va,

combining “which macrostate” uncertainty and “which microstate given
the macrostate” uncertainty.

Macrostate probabilities (actual and prior): py = Tr(Mgzp) and gz = Tr(MzT).
Effective dimension of set of constrained states: dog = ¢5(7).
Macrostate volumes: V; = qg deg-

Volumes = prior macrostate probabilities * effective dimension of constrained state space
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looser
constraints

S(7)== Equilibrium Entropy
M cannot distinguish p from 7.

tighter
constraints

coarser M

55 ()

finer M

S(p)=

von Neumann Entropy
Optimal Measurements

S(p) = =Tr plogp
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Different M capture different ways a state can be low entropy!

Equilibrium: High entropy for “all” coarse M.
Ability to do M that reveals low entropy — extract resources from the system.

15 1 15 15
S(r) 8(7) s S(7)
z / M
z Mz - Ty
@ — Mp, — Mpy
— Mgy — Mgy
— Mg, ® Mg, — Mg, ® Mg,
10 10
0 1 oyr 2 3 0 1 yr o 2 3

/T =0 1T

/T =0

/T =0 /T =05

(Depicted: Prior T = e P | Z, Measurement M = spatial, velocity, speeds, or thermodynamic.)
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Uniting the Entropy Zoo: Special Cases and Limits

Nearly all commonly used physical entropies derive from S7;() as special cases and limits.

Fundamental Limits More Particular Limits
The lover bound Si(s) > ST Boring version: The case M = (|EXE e with
Ostimal M case: iy mm s Conversen:Eqilriam e 57 assctaler withthe
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Lirge class of methods, often captured by

* Dynamical canorical ent
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Lot’s more to say! But let's skip to equilibration.

(poster)

Sopsp1=C o [

Sl l) = C = | PUEP Ve P(7.7 di

“Therefore Boltzmann's Htheorems are equivalet to
dg
Sl 0.

(srict o ncestiviy i e o i implfying ssumprons)
* Gt e 1
Uriform orior -
1t e Tl -l hae e e cel
Eivaien to
Sulp) < Sulp)
inmotationof (66-67)of Ehvrfest 1912,
= von Neumann's quantum H-theorem
£~ E Tty el o el
g e ot e
e, coarer than some At commutes withthe 1)
What N cals S(U,) — S(6) s eaua 0 0u Dyl ).

9291

“Thus ven Neumani's Htheorem s of the form

S -Sgse

of same form as our main equifbraton theorems Sec. VI,
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https://jcsphysics.net/pub/files/oe-poster.pdf

2nd Laws, Equilibration, Thermalization



The map of second Iaws

ST s
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> Say p(t) equilibrated if p looks like 5 to all coarse M.
» Say p(t) thermalized if p looks like 7 = e=? /Z to all coarse M.
> Say p(t) equilibrated to T if p looks like T to all coarse M.
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Thermalization is common. Example:

1C 3 C

(animation)

Challenge:

Tell me a coarse M now, that after time ¢ will distinguish p from 7 = eiBH/Z.

Not unique: could equally well say microcanonical T = Ilg /Wg.
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https://jcsphysics.net/vis/kinetic/gif/gun_naive_N500_1720707271.gif

A fun connection.

You can’t distinguish between the particles.
You can only do M that measures distributions of 1p properties
(think Max-Boltz speed distribution).

The M measuring P(z,p) from Boltzmann’s H-theorem is finer
than all the other such M. Thus for any M you can do

min ST =S
M e {avalailable M} M (p) = Smp, ) (P)

where

SFipi, ) () =C = [ dedp Pa,p) g P(z.p)

(animation)

Boltzmann’s H-theorem proves an observer would at least need
to distinguish between particles to possibly reveal low entropy.

*Ask me about Gibbs H-theorem and why QM thermalization is more robust.

26
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A quantum example of thermalization and its classical counterpart.

_io— CAam =
p 0 : : JE——— :
S N S &
2 8
i) - ) ) S
4
—
* Siem, Sit,6 My
Sinets Sityets
o= SyeMy, — Su,em,
- - S "
c-= Suyeiy : Su, tc
; ‘
10 yr 107 10° tr 3 4

Both just look like “weakly coupled heat exchange”.
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Is chaos necessary? (What we see so far...)

Non-integrable systems will generically thermalize for all ICs and all coarse M.

Free systems will appear to thermalize for some ICs and some M, but not others.

Free systems likely do equilibrate to p generically, but not to some useful looser 7.

animations

28
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Theory of equilibration

Isolated system equilibration

Deviation from maximal entropy is

A(t) = D (p(t) [ 7)-

Second Law on Average

Equilibration to 7 on average if

A=Duy(pllT) <e

Key Theorem.

Dun(pllT) = Dm(pllp) + Da (P 7)-

Equilibration term 4+ Thermalization term.

— S0
== Sulp)

Equilibration if 7 is tight enough and M is
coarse enough.

First term: Dynamical bounds.
Second term: ETH-like things.
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Equilibration term D/ (p||p)

v Large Systems Bound
Many more occupied energy eigenstates than number of measure-

ment outcomes (do () > m).

D (pllp) < elogm + g(e),

where € =

m
44/dy(P)

v Small Systems Bound

Just a few occupied energy eigenstates (S (7) < S(7)).

Du(pllp) < S(P).

... Medium Systems 7777

Numerics suggest more bounds exist.

da(p) = 1/ Tr(52)
g(e)=—cloge+(1+e)log(14c)
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Thermalization term D (5] 7)

“Measured ergodic hypothesis”

v Simple bound.

Time-averaged probabilities similar to prior probabilities.

Da (t)

qx

Dy (pll7T) < log sup

v ETH Bound

Nearby energy eigenstates look the same to M .

Suppose D (Vg ||¢gr) < €wm for all E, E’
in the relevant energy window. Then

Dy (ﬁ H 7') < €grn-

To break integrable systems look at therm term.
Fewer M will obey ETH?



H:HA+HB+>\Hint
weak coupling

—A=—E=B=]

ME' A MEB

r=ePH)7
energy conservation

M=Mg, ® Mgy
coarse local energy
measurements

From entropy increase to physical consequences

Suppose we successfully proved Dy (p|| T) < € using methods
of previous section, for coarse local energy measurement
M = Ma ® Mp with thermal prior T = e~ H/Z.

> Note: Empirically true in the numerical example.

Consider the systems on the left.

e Assume quantum uncertainty is less than energy bin widths,
so that MEA ® MEB gives a single definite outcome.

e Take weak coupling limit.

Then you can prove the observed energies will obey

. dEs dEg
dSyy = ——+ —— >0,
L
and that equilibrium is at
Ta =Ts,

with T-1 = % log WEg textbook Boltzmann temps.

Heat flows from hot to cold bodies!

You need the special new Vg for the equilibration proof, but
standard Wg come out for weak coupling.
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Concluding Remarks



If only we had more time. | haven't yet mentioned:

» The hierarchy of constraints and constraint/state bijection.
Connections to entanglement theory.

Connections to quantum measurement theory.

>
>
» Connections to Bayesian state estimation problems.
» Entropic uncertainty principles.

>
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There are loads of open questions! Including:

> Strengthening and applying equilibration/thermalization bounds.
» Free vs chaotic.

» How can you extract resources given ability to reveal low entropy?
» Fluctuation theorems.

» OK I'm running out of time...

Please help!! ;)
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Von Neumann writes

1 reman e entropies of AN U, (ol Lhe State and of the corresponding
(virtual) micro-canonical ensemble). The expressions for entropy given by the author in
are not applicable here in the way they were intended, as they were computed from
the perspective of an observer who can carry out all measurements that are possible
in principle —i.e., regardless of whether they are macroscopic (for example, there every
pure state has entropy 0, only mixtures have entropies greater than 01). 1f we take
into account that the observer can measure only macroscopically then we find different
cntropy values (in fact, greater ones, as the observer is now less skilful and possibly can
therefore extract less mechanical work from the system); nevertheless, the theory can be
set up also in this case. How to do this has been discussed by E. \\wm-rElhc formulas
for the entropics (), $(Uy) of 1 and U, readf*

10 aenn

R (Euate )
S) = =3 3 Bty ln 2 (30)
a=1w=1 e
=Y (B b) u.mtf"U> (35)
= g

By the way, these entxopy formulas are identical to the usual ones based on Boltzmann’s
definition of entropy (and Stirling’s formula), by noting that the (Eyet, )
{the (8,0, 1)) are the relative occupation numbers of the phase cells (of the energy
surfaces) and the s, (the S,) are the munbers of quantum orbits thercin, ic., their
so-called a-priori weights.

A

1929)

(Proof of the Ergodic Theorem and the H-Theorem.

MACROSCOP:

Although our entropy expression, ss we sew, is
completely enalogous to the classical entropy, it is still

4. THE MACROSCOPIC MEASUREMENT 399

surprising that it is invarient in the normal evolution in
time of the system (process 2.), and only increases with
measurements (process 1.) -- in the classical theory (where
the messurements in general played no role) it increased
s & rule even with the ordinary mechanical evolution in
time of the system. It is therefore nece

this apparently paradoxical situation.
The normal classical

Flan mina aa Pallawes  fma mald foie o

(Mathematical Foundations Book, Sec. V.4, 1955)

Statistical Thermo — Entropy seen by observers
(in particular he uses what is now called observational entropy)


https://doi.org/10.1140/epjh/e2010-00008-5
https://doi.org/10.2307/j.ctt1wq8zhp

Final thought: A reminder about Shannon entropy

Prediction and Entropy of Printed English
By C. E. SHANNON
(Manuscript Received Sept. 15, 1950)

e e e . L.
e j - » The entropy of (information in) a text
- 1 depends on the decoding mechanism...
RSO ...molecules, symbols, n-grams, words,
: R ? meanings?
O s ]
AR » Physical entropy also depends on the
e decoding mechanism.
oY
RN .t
Fo Fy Fa Fs Fword
26 letter..... ... 470 4,14 3.56 3.3 2.62 @
27 letter.................. 4.76 4.03 3.32 31 . 2,14
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