A unified entropy for statistical mechanics
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Main Definition Uniting the Entropy Zoo: Special Cases and Limits Coarse-graining Microscopic state Conrse-graining
by measurements " —— by constraints
« . ” .. . . . . . . . o e state of the system.
What is entropy? - What entro.py definition can give a Un'.ﬁed picture of the 2nd Law Nearly all commonly used physical entropies derive from S7 (p) as special cases and limits. A measurement. 0 Constraints on expected
across non-/equilibrium, open/isolated, pure/mixed, classical/quantum systems? M (QM: Density Matrin values of observables.
. . . . , « . " Fundamental LimitS More ParﬁCUIar Limits (e.g. a phase space partition (CM: Phase Space Density) Tf(pX) — O
The idea of this paper [1] is to combine von Neumann's “macroscopic entropy” 2] . . or quantum POVM) Linear constrante. — on <.
(i.e. “observational entropy” [3]) and Jaynes' “maximum entropy principle” [4] into a ) ﬁ” lNe“mZ”” (nglaisgcalsgbfs) entropy S(p) ) g'agonal er)trngyh M = (|EXE])p with 7 o 1 ) g s 0 = 2
single coarse-grained entropy definition uniting nearly all entropies in physics. e lower bound 5y,(p) = 5(p). OFNE VETSION. The tast M = /l)p WIR T oC L. Vg, : -
5 5 PY 5 4 P Py Optimal M case: miny; Sy(p) = S(p). Cpol version: EqU|I|br|um entropy S(p) associated with the Informational entropies: *%Q i 3 Prior
Inf . IE (Bound assumes constraint: false info is unbounded.) fightest possible stationary constraint 7 = p. H(p)=—>_,p:logp, RN 1. T
nformational Form « Jaynes max entropy S(r) (Note: constant in isolated systems.) S(p) = —Trplog p N = Maxnt state for constraint
Co (e.g. T = e PH/Z)
e o - - The upper bound S(7) > S7,(p). " Entanglement entropy Spiq) = =2, Prlog g e / o
Deﬁnlhon. The entropy of state p, coarse-grained by measurement M, with prior T, The equilibrium value. Minimum for local M on entangled subsystems. S(p:0) = —Tr plogo o Sifffvlgﬁf pror 75
S o _
S}h(p) — S(T) — DM(IOHT) The case of trivial M = <]l) Sent(¢AB> — inf SMA@)MB(wAB)- D(qu) = prx log(px/qx> ( ) constraint S(p; 1) < S(7).
. . . . . . . . " Boltzmann entropy log \V4 My, Mp (pHU) - Tl"(p log p — plog O> generalized “obser-
This is missing information given both measured info and constraint info. The case of a definite macrostate (only one nonzero p). Compare global minimum S(p) = mina Sa(p). Informational forms for constraints: vational” entropy
Prior = MaxEnt state for constraints on the system. In itself still a generalization due to generalized V. = Wehrl entropy (Wehrl 1979) ggp 3 = g((:)) (Physical) Entropy
Measured RE: Dys(p||7) = D(p||q) where p, = Tr(M,p) and q, = Tr(M,7). A contribution to the total (mean Boltzmann term). The case of POVM M = (@)ZGC, where |z) are the :
" Observable Shannon entropy Hj, overcomplete basis of coherent states, with 7 < 1, so
Py P .
The definition derives from the principle “entropy = missing information”, or The case of equal prior probabilities (V, = const), g7 dz Q1 - Physical Examples
| W) ==L [dzQlogQ,  Q(2) = (lplz).
as for M = (|z)x|), with 7 = 1/d.
S = Itor — 1, A contribution to the total (Shannon term). " Free energies Different M capture different ways a state can be low entropy!
. : . - Can arise in many ways, see paper.
which for Shannon H (p), von Neumann S(p), and the standard OE S;(p), is stated * Observational entropy (traditional def) Sy;(p) o . vy " p. 15 ; ; 15 ; ; 15 ; ; 15 ;
The case 7 = 1/d (uniform prior, trivial constraint). " Rényi, Tsallis, and related entropies | S(1) e 1G] a—— — ]
H(p) = log N — D(pH 1/N) Replace D, by generalized divergence. For Rénvyi, z /
— _ Entropy Production ) = e e ! 7 T
. S(p) ng g(pH 1/ d>d Py STralp) = S(r) = Diy(pll7) = —log {(p/Vi)), - - o i —
= logd — 1/d). " Ent ducti | T S O V0 |, — Mo
w(p) & m(pllL/d) ntropy production (general) where a = 1 + s, measures moments of prob-to-vol ratio. 10 SN TS VT A T 2T A el T T = Me oMy
. .o . . . . . . . 0 1 g1 2 3 0 1y 2 3 0 1y 2 3 0 1 g1 2 3
These implicitly assume prior ignorance, with 1 /d appearing as the informational prior. Large class of methods, often captured by = Dynamical canonical entropy T - - |
.. . . . IC 1 ey T | R e 2 PR IC 3 ol [ . .- IC 4
The new definition assumes prior knowledge of a linear constraint such as (H) = F, ASG = ST (p(t)) — ST (p(0)) The case 7(t) oc Ta(t) ® T(t) with T4(t) o e #4BHA and so N

with the maximum entropy state 7 taken as the prior. on, for local energy constraint in subsystems.

with time-dependent M, 7, p.

vN’s macroscopic entropy (=traditional OE): Sy(p) = logd — Dys(p||1/d). * Entropy production (Quantum Thermo eg Potts 2019) * HEP coarse-/fine-grained entropies
The cases S(1) and S(p), respectively. t/T =0 t/T = 0.5 t/T =0 t/T = 0.5 t/T

System & Bath
T(t) =1¢® e_ﬁ(Z) b

"5;%»-': ol 'l '
—0 YT =05 t/T =0 /T = 0.5

Stat Mech Form

(Depicted: Prior 7 = e # /Z Measurement M = spatial, velocity, speeds, or thermodynamic.)

is bath energy constraint (Hg) = Ep(t). Historical H-theorems

Equivalent definitions. The above entropy is equivalent to M(t) = Ms(t) ® 1 are optimal measurements on system. = Boltzmann’s H-theorems (Boltzmann 1872) Heat exchange in a classical hard sphere gas versus quantum random matrix model.
Z o Da With T = 5~ one finds T = e PH /7 canonical prior (average energy conservation).
Pz 108 "dEg(t) M p(g) measures distribution of 1-particle energies. o 16 ; ; g
ASM AS(,OS) T (1 . . . . . ~ log d sy e IR =
o o Is(t) Mpz 7 measures distribution over 1-particle phase space. SO 5 5 5 SN DU S
which is also the Shannon plus mean Boltzmann entropy P(E B BT SR N Sl S REPORPRE
For decorrelated thermal p(0) this equals the usual RE form, and is > 0. ST (p)=C"—n / P(E)log (E) dE — L 21 ' — ulennll 0f—— —
Syr(p) = H(p) + >y pelog Va, Usual RE form is EP = D(p(t) | ps(t) ® 7(1)). o EH : Eerr £ f pUR—

P « : ) . (« : : : ) [ E d . S h . h d . ?\ ,, 0% i | ; H:HA+HB+Hint . d ‘ = (Ha) ‘<HB>
combining “which macrostate” uncertainty and “which microstate given macrostate ntropy production (Stochastic thermodynamics) St (p)=C—n / P(,p)log P(&, ) didp ” oty eld™ [ Sy | STy
uncertainty. System @ Environment. o B o E_A_ - | Siror,

T = I1p/Wpg global microcanonical energy shell. Therefore Boltzmann's H-theorems are equivalent to S N 7 MEJ === Swyon,
Macrostate probabilities (actual and prior): p, = Tr(M,p) and ¢, = Tr(M,7). M =1Is ® 1 projective measurement on system. y 129 1 . T - - = . o ) - . B SMA@“;(-)S
Effective dimension of set of constrained states: dog = e3(7). Defining a bunch of fancy things shows dtSM( p) > 0. | . "
Macrostate volumes: V, = q, du. AST(p) = —BA(E,) + A(S, — log py) (Depicted: Prior 7 = e " /Z Measurement M = coarse local energy measurements.)
o MAP ! (Strict non-negativity is due to his simplifying assumptions.)
o ot tonenint) - o | | which is stochastic EP as in (11) of Seifert 2017, " Gibbs H-theorem (XII of Gibbs 1902) Standard thermo = energy measurements/constraints on weakly coupled subsystems.
| Uniform (Prior: 7 =1 /d. Constraint = trivial. Vols: V;, = Tr(M,).): S, = intrinsic mesostate entropy Uniform prior 7 o 1. Many second laws are important: mixing the pancakes versus letting them cool.
V, o tr(M,r) Si(p) =logd — Dy(p||1/d). g‘”:e?veifjsrtjzf;efp\/ M cuts the full n-particle phase space into finite cells.
Canonical (Prior: 7 = e P /Z. Constraint (H) = E. Vols: Te(M,e~#H-E))): Equivalent to Second Laws and Thermodynamics
—BH Local Detailed Balance Su(po) < Swr(pr-roo)
Sii(p) = BE +log Z — Dy (plle ™"/ Z). . | .
Microcanonical (Prior: T = T1/W. Constraint p € TL Vols: V, = Te(M,I1).): " 2nd law of stochastic thermodynamics in notation of (66-67) of Ehrenfest 1912, In the paper we shpvv various entropy increase theorems that can be ngorously proved
If dp./dt =) Rpwpy With LDB R/ Ry = q0/qp, then = von Neumann’s quantum H-theorem (VN 1929) for S ,(p) in both isolated and open systems, and discuss how these entropy increase

Si(p) =log W — Dy (p||II/W).

| ds ZR | R,iDy > T =3, Tr(pllg) = mi i i theorems connect to thermodynamics. See paper.
' i - i 1Pyt 10 . . E
gliiigxlesttylénggﬁgfﬁgfﬁt textbook EQ entropies become dynamical non-EQ maxima. p (P Z va'Pa oy (a coarse version of 3).
. . . . M = anything coarser than “quantum phase cells” R
. . . . | eferences
Entropy increase: system finds most likely macrostates given the constraints. Clausius Relations lie. coarser than some M’ that commutes with the IT)
Observed versus Inherent Information " Clausius inequalities What vN calls S(Uy) — S(v) is equal to our Dy(p|| 7). [1] Joseph Schindler, Philipp Strasberg, Niklas Galke, Andreas Winter, and Michael G. Jabbour. Unification of observational
' ' , , entropy with maximum entropy principles. March 2025. arXiv:2503.15612 [quant-ph].
. _ . . _ >ee paper for how relations like Thus von Neumann's H-theorem is of the form | . | . |
For states 0 obeymg the constraint S(,O; 7—) < S(T) (= arb|trary linear constraint), dEA dEB [2] John von Neumann. Proof of the ergod|c-theorem and the H—theorem in quantum mechanics. Translation of: Beweis
ASM< — >0 S(T) _gr (,0) < ¢ des Ergodensatzes und des H-Theorems in der neuen Mechanik. EPJ H, 35(2):201-237, November 2010.
M ~

T v
SM(/O> > S(P) are derived in either Canomcal or mlcrocanonical form. and | N | 3] Dominik Saﬁ.’ének, J. M. Deutsch, and Anthony Aguirre. Quantum coarse-grained entropy and thermodynamics. Phys.
conditions where > 0 is guaranteed or highly probable of same form as our main equilibration theorems (Sec. VII). Rev. A, 99(1):010101, January 2019.
No observer can extract more information than what is inherently available in the state. - ' [4] E.T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106(4):620-630, May 1957.
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