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Main Definition

“What is entropy?”... What entropy definition can give a unified picture of the 2nd Law

across non-/equilibrium, open/isolated, pure/mixed, classical/quantum systems?

The idea of this paper [1] is to combine von Neumann’s “macroscopic entropy” [2]

(i.e. “observational entropy” [3]) and Jaynes’ “maximum entropy principle” [4] into a

single coarse-grained entropy definition uniting nearly all entropies in physics.

Informational Form

Definition. The entropy of state ρ, coarse-grained by measurementM , with prior τ ,
is

SτM (ρ) = S(τ ) −DM (ρ‖τ ).
This is missing information given both measured info and constraint info.

Prior = MaxEnt state for constraints on the system.

Measured RE: DM(ρ‖τ ) ≡ D(p‖q) where px = Tr(Mxρ) and qx = Tr(Mxτ ).

The definition derives from the principle “entropy = missing information”, or

S = Itot − I,

which for Shannon H(p), von Neumann S(ρ), and the standard OE SM (ρ), is stated
H(p) = logN −D(p‖1/N)
S(ρ) = log d−D(ρ‖1/d)

SM (ρ) = log d−DM (ρ‖1/d).
These implicitly assume prior ignorance, with 1/d appearing as the informational prior.
The new definition assumes prior knowledge of a linear constraint such as 〈H〉 = E,
with the maximum entropy state τ taken as the prior.

vN’s macroscopic entropy (=traditional OE): SM(ρ) = log d−DM(ρ‖1/d).

Stat Mech Form

Equivalent definitions. The above entropy is equivalent to

SτM (ρ) = −
∑
x

px log px
Vx
,

which is also the Shannon plus mean Boltzmann entropy

SτM (ρ) = H(p) +
∑
x px log Vx,

combining “which macrostate” uncertainty and “which microstate given macrostate”

uncertainty.

Macrostate probabilities (actual and prior): px = Tr(Mxρ) and qx = Tr(Mxτ ).
Effective dimension of set of constrained states: deff = eS(τ).

Macrostate volumes: Vx = qx deff.

Uniform (Prior: τ = 1/d. Constraint = trivial. Vols: Vx = Tr(Mx).):

SτM(ρ) = log d−DM(ρ‖1/d).

Canonical (Prior: τ = e−βH/Z . Constraint 〈H〉 = E. Vols: Tr(Mxe
−β(H−E)).):

SτM(ρ) = βE + logZ −DM(ρ‖e−βH/Z).

Microcanonical (Prior: τ = Π/W . Constraint ρ ∈ Π. Vols: Vx = Tr(MxΠ).):

SτM(ρ) = logW −DM(ρ‖Π/W ).

...textbook EQ entropies become dynamical non-EQ maxima.

Entropy increase: system finds most likely macrostates given the constraints.

Observed versus Inherent Information

For states ρ obeying the constraint S(ρ; τ ) ≤ S(τ ) (= arbitrary linear constraint),
SτM (ρ) ≥ S(ρ).

No observer can extract more information than what is inherently available in the state.

Uniting the Entropy Zoo: Special Cases and Limits

Nearly all commonly used physical entropies derive from SτM (ρ) as special cases and limits.

Fundamental Limits

von Neumann (or classical Gibbs) entropy S(ρ)
The lower bound SτM(ρ) ≥ S(ρ).
OptimalM case: minM SM(ρ) = S(ρ).
(Bound assumes constraint: false info is unbounded.)

Jaynes max entropy S(τ )
The upper bound S(τ ) ≥ SτM(ρ).
The equilibrium value.

The case of trivialM = (1).
Boltzmann entropy log Vx
The case of a definite macrostate (only one nonzero px).
In itself still a generalization due to generalized Vx.
A contribution to the total (mean Boltzmann term).

Observable Shannon entropy HM(ρ)
The case of equal prior probabilities (Vx = const),
as forM = (|x〉〈x|)x with τ = 1/d.
A contribution to the total (Shannon term).

Observational entropy (traditional def) SM(ρ)
The case τ = 1/d (uniform prior, trivial constraint).

Entropy Production

Entropy production (general)

Large class of methods, often captured by

∆SτM = SτtMt

(
ρ(t)

)
− Sτ0M0

(
ρ(0)

)
with time-dependentM, τ, ρ.

Entropy production (Quantum Thermo eg Potts 2019)

System ⊗ Bath
τ (t) = 1S ⊗ e−β(t)HB

Z is bath energy constraint 〈HB〉 = EB(t).
M(t) = MS(t) ⊗ 1B are optimal measurements on system.

With TB = β−1 one finds

∆SτM = ∆S(ρS) +
∫ t

0

dEB(t′)
TB(t′)

For decorrelated thermal ρ(0) this equals the usual RE form, and is ≥ 0.
Usual RE form is EP = D(ρ(t)‖ρS(t) ⊗ τB(t)).

Entropy production (Stochastic thermodynamics)

System ⊗ Environment.
τ = ΠE/WE global microcanonical energy shell.

M = ΠS ⊗ 1 projective measurement on system.

Defining a bunch of fancy things shows

∆SτM(ρ) = −β∆〈Ex〉 + ∆〈Sx − log px〉

which is stochastic EP as in (11) of Seifert 2017.

Sx = intrinsic mesostate entropy

Ex = mesostate energy

β = environment temp

Local Detailed Balance

2nd law of stochastic thermodynamics

If dpx/dt =
∑

x′ Rxx′px′ with LDB Rxx′/Rx′x = qx/qx′, then

d

dt
SτM(ρ) =

∑
x,x′

Rxx′px′ log Rxx′px′

Rx′xpx
≥ 0.

Clausius Relations

Clausius inequalities

See paper for how relations like

∆SτM(ρ) =
∫
dEA

TA
+
∫
dEB

TB
≥ 0

are derived in either canonical or microcanonical form, and

conditions where ≥ 0 is guaranteed or highly probable.

More Particular Limits

Diagonal entropy

Boring version: The caseM = (|E〉〈E|)E with τ ∝ 1.

Cool version: Equilibrium entropy S(ρ) associated with the
tightest possible stationary constraint τ = ρ.
(Note: constant in isolated systems.)

Entanglement entropy

Minimum for localM on entangled subsystems,

Sent(ψAB) = inf
MA,MB

SMA⊗MB
(ψAB).

Compare global minimum S(ρ) = minM SM(ρ).
Wehrl entropy (Wehrl 1979)

The case of POVMM =
( |z〉〈z|

π

)
z∈C, where |z〉 are the

overcomplete basis of coherent states, with τ ∝ 1, so

SτM(ρ) = −1
π

∫
dz Q logQ, Q(z) = 〈z|ρ|z〉.

Free energies

Can arise in many ways, see paper.

Rényi, Tsallis, and related entropies

Replace DM by generalized divergence. For Rényi,

SτM,α(ρ) = S(τ ) −Dα
M(ρ‖τ ) = − log

〈
(px/Vx)s

〉1/s
px

where α = 1 + s, measures moments of prob-to-vol ratio.

Dynamical canonical entropy

The case τ (t) ∝ τA(t) ⊗ τB(t) with τA(t) ∝ e−βA(t)HA, and so
on, for local energy constraint in subsystems.

HEP coarse-/fine-grained entropies

The cases S(τ ) and S(ρ), respectively.

Historical H-theorems

Boltzmann’s H-theorems (Boltzmann 1872)

τ = e−βH/Z canonical prior (average energy conservation).

MP (E) measures distribution of 1-particle energies.

MP (~x,~p) measures distribution over 1-particle phase space.

SτMP (E)
(ρ) = C ′ − n

∫
P (E) log P (E)

E−d
2+1

dE

SτMP (~x,~p)
(ρ) = C − n

∫
P (~x, ~p) logP (~x, ~p) d~xd~p

Therefore Boltzmann’s H-theorems are equivalent to

d

dt
SτM(ρ) ≥ 0.

(Strict non-negativity is due to his simplifying assumptions.)

Gibbs H-theorem (XII of Gibbs 1902)

Uniform prior τ ∝ 1.

M cuts the full n-particle phase space into finite cells.
Equivalent to

SM(ρ0) ≤ SM(ρt→∞)

in notation of (66-67) of Ehrenfest 1912.

von Neumann’s quantum H-theorem (vN 1929)

τ =
∑

E Tr(ρΠE) ΠE
Tr ΠE

mixture of microcanonical shells

(a coarse version of ρ).

M = anything coarser than “quantum phase cells”
(ie. coarser than someM ′ that commutes with the ΠE)

What vN calls S(Uψ) − S(ψ) is equal to our DM(ρ‖τ ).

Thus von Neumann’s H-theorem is of the form

S(τ ) − SτM(ρ) ≤ ε

of same form as our main equilibration theorems (Sec. VII).

Microscopic stateCoarse-graining
by measurements

Coarse-graining
by constraints

The state of the system.

ρ
(QM: Density Matrix)

(CM: Phase Space Density)

Constraints on expected
values of observables.

Tr(ρX) = 0
(Linear constraints, = or ≤.)

(e.g. ⟨H⟩ = E)

A measurement.

M
(e.g. a phase space partition

or quantum POVM)

Sτ
M(ρ)

generalized “obser-
vational” entropy

(Physical) Entropy

macrostate =
measurement outcome

sy
stem

state

Prior

τ
MaxEnt state for constraint.

(e.g. τ = e−βH/Z)

en
sem

b
le

Specifying prior τ is
equivalent to specifying

constraint S(ρ; τ) ≤ S(τ).

Informational Form.

Sτ
M(ρ) = S(τ)−DM(ρ∥τ)

“missing info” = “prior missing info” − “info gained from measurement given prior”.

Macrostate probabilities (actual and prior): px = Tr(Mxρ) and qx = Tr(Mxτ).
Measured RE: DM (ρ∥τ) ≡ D(p∥q) for actual/prior macrostate probabilities.

Stat Mech Form.

Sτ
M(ρ) = −

∑
x

px log
px
Vx

= H(p) +
∑
x

px log Vx

= Shannon + mean Boltzmann entropy
= “which macrostate” uncertainty + “which microstate given macrostate” uncertainty.

Effective macrostate volumes: Vx = qx deff .
Effective dimension of set of constrained states: deff = eS(τ).

Informational entropies:

H(p) = −
∑

x px log px
S(ρ) = − Tr ρ log ρ

S(p; q) = −
∑

x px log qx
S(ρ;σ) = − Tr ρ log σ

D(p‖q) =
∑

x px log(px/qx)
D(ρ‖σ) = Tr(ρ log ρ− ρ log σ)

Informational forms for constraints:

S(ρ; τ ) ≤ S(τ )
S(ρ; τ ) = S(τ )

Physical Examples

DifferentM capture different ways a state can be low entropy!

(Depicted: Prior τ = e−βH/Z , MeasurementM = spatial, velocity, speeds, or thermodynamic.)

Heat exchange in a classical hard sphere gas versus quantum random matrix model.

(Depicted: Prior τ = e−βH/Z , MeasurementM = coarse local energy measurements.)

Standard thermo = energy measurements/constraints on weakly coupled subsystems.

Many second laws are important: mixing the pancakes versus letting them cool.

Second Laws and Thermodynamics

In the paper we show various entropy increase theorems that can be rigorously proved

for SτM (ρ) in both isolated and open systems, and discuss how these entropy increase
theorems connect to thermodynamics. See paper.
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