¹Universitat Autònoma de Barcelona

²Universidad de Cantabria

³Universität zu Köln

⁴ICREA ⁵Technische Universität München ⁶Institut Polytechnique de Paris

⁷École polytechnique de Bruxelles

Main Definition

"What is entropy?"... What entropy definition can give a unified picture of the 2nd Law across non-/equilibrium, open/isolated, pure/mixed, classical/quantum systems?

The idea of this paper [1] is to combine von Neumann's "macroscopic entropy" [2] (i.e. "observational entropy" [3]) and Jaynes' "maximum entropy principle" [4] into a single coarse-grained entropy definition uniting nearly all entropies in physics.

Informational Form

Definition. The entropy of state ρ , coarse-grained by measurement M, with prior τ ,

$$S_M^{\tau}(\rho) = S(\tau) - D_M(\rho || \tau).$$

This is missing information given both measured info and constraint info.

Prior = MaxEnt state for constraints on the system.

Measured RE: $D_M(\rho \| \tau) \equiv D(p \| q)$ where $p_x = \text{Tr}(M_x \rho)$ and $q_x = \text{Tr}(M_x \tau)$.

The definition derives from the principle "entropy = missing information", or

$$S = I_{\text{tot}} - I$$

which for Shannon H(p), von Neumann $S(\rho)$, and the standard OE $S_M(\rho)$, is stated

$$H(p) = \log N - D(p||1/N)$$

$$S(\rho) = \log d - D(\rho || 1/d)$$

$$S_M(\rho) = \log d - D_M(\rho || 1/d).$$

These implicitly assume prior ignorance, with 1/d appearing as the informational prior. The new definition assumes prior knowledge of a linear constraint such as $\langle H \rangle = E$, with the maximum entropy state τ taken as the prior.

vN's macroscopic entropy (=traditional OE): $S_M(\rho) = \log d - D_M(\rho || 1/d)$.

Stat Mech Form

Equivalent definitions. The above entropy is equivalent to

$$S_M^{\tau}(\rho) = -\sum_x p_x \log \frac{p_x}{V_x},$$

which is also the Shannon plus mean Boltzmann entropy

$$S_M^{\tau}(\rho) = H(p) + \sum_x p_x \log V_x$$

combining "which macrostate" uncertainty and "which microstate given macrostate" uncertainty.

Macrostate probabilities (actual and prior): $p_x = \text{Tr}(M_x \rho)$ and $q_x = \text{Tr}(M_x \tau)$.

Effective dimension of set of constrained states: $d_{\text{eff}} = e^{S(\tau)}$.

Macrostate volumes: $V_x = q_x d_{\text{eff}}$.

Uniform (Prior: $\tau = 1/d$. Constraint = trivial. Vols: $V_x = \text{Tr}(M_x)$.):

$$S_M^{\tau}(\rho) = \log d - D_M(\rho \| 1/d).$$

Canonical (Prior: $\tau = e^{-\beta H}/Z$. Constraint $\langle H \rangle = E$. Vols: $\text{Tr}(M_x e^{-\beta(H-E)})$.):

$$S_M^{\tau}(\rho) = \beta E + \log Z - D_M(\rho || e^{-\beta H}/Z).$$

Microcanonical (Prior: $\tau = \Pi/W$. Constraint $\rho \in \Pi$. Vols: $V_x = \text{Tr}(M_x\Pi)$.):

 $S_M^{\tau}(\rho) = \log W - D_M(\rho || \Pi/W).$

...textbook EQ entropies become dynamical non-EQ maxima.

Entropy increase: system finds most likely macrostates given the constraints.

Observed versus Inherent Information

For states ρ obeying the constraint $S(\rho; \tau) \leq S(\tau)$ (= arbitrary linear constraint),

$$S_M^{\tau}(\rho) \ge S(\rho).$$

No observer can extract more information than what is inherently available in the state.

Uniting the Entropy Zoo: Special Cases and Limits

Nearly all commonly used physical entropies derive from $S_M^{\tau}(\rho)$ as special cases and limits.

Fundamental Limits

- von Neumann (or classical Gibbs) entropy $S(\rho)$
- The lower bound $S_M^{\tau}(\rho) \geq S(\rho)$. Optimal M case: $\min_M S_M(\rho) = S(\rho)$. (Bound assumes constraint: false info is unbounded.)
- Jaynes max entropy $S(\tau)$ The upper bound $S(\tau) \geq S_M^{\tau}(\rho)$.
- The equilibrium value. The case of trivial M = (1).
- Boltzmann entropy $\log V_x$

The case of a definite macrostate (only one nonzero p_x). In itself still a generalization due to generalized V_x . A contribution to the total (mean Boltzmann term).

• Observable Shannon entropy $H_M(\rho)$ The case of equal prior probabilities $(V_x = const)$, as for $M = (|x\rangle\langle x|)_x$ with $\tau = 1/d$.

A contribution to the total (Shannon term).

• Observational entropy (traditional def) $S_M(\rho)$ The case $\tau = 1/d$ (uniform prior, trivial constraint).

Entropy Production

Entropy production (general)

Large class of methods, often captured by

$$\Delta S_M^{\tau} = S_{M_t}^{\tau_t} (\rho(t)) - S_{M_0}^{\tau_0} (\rho(0))$$

with time-dependent M, τ, ρ .

 Entropy production (Quantum Thermo eg Potts 2019) System ⊗ Bath

 $au(t)=\mathbb{1}_S\otimes rac{e^{-eta(t)H_B}}{Z}$ is bath energy constraint $\langle H_B \rangle=E_B(t)$. $M(t) = M_S(t) \otimes \mathbb{1}_B$ are optimal measurements on system. With $T_B = \beta^{-1}$ one finds

$$\Delta S_M^{\tau} = \Delta S(\rho_S) + \int_0^t \frac{dE_B(t')}{T_B(t')}$$

For decorrelated thermal $\rho(0)$ this equals the usual RE form, and is ≥ 0 . Usual RE form is $EP = D(\rho(t) || \rho_S(t) \otimes \tau_B(t))$.

Entropy production (Stochastic thermodynamics) System ⊗ Environment.

 $\tau = \Pi_E/W_E$ global microcanonical energy shell. $M = \Pi_S \otimes \mathbb{1}$ projective measurement on system. Defining a bunch of fancy things shows

$$\Delta S_M^{\tau}(\rho) = -\beta \Delta \langle E_x \rangle + \Delta \langle S_x - \log p_x \rangle$$

which is stochastic EP as in (11) of Seifert 2017.

 S_x = intrinsic mesostate entropy

 E_x = mesostate energy

 β = environment temp

Local Detailed Balance

2nd law of stochastic thermodynamics

If
$$dp_x/dt=\sum_{x'}R_{xx'}p_{x'}$$
 with LDB $R_{xx'}/R_{x'x}=q_x/q_{x'}$, then
$$\frac{d}{dt}S_M^\tau(\rho)=\sum_{x,x'}R_{xx'}p_{x'}\log\frac{R_{xx'}p_{x'}}{R_{x'x}p_x}\geq 0.$$

Clausius Relations

Clausius inequalities

See paper for how relations like

$$\Delta S_M^{\tau}(\rho) = \int \frac{dE_A}{T_A} + \int \frac{dE_B}{T_B} \ge 0$$

are derived in either canonical or microcanonical form, and conditions where ≥ 0 is guaranteed or highly probable.

More Particular Limits

Diagonal entropy

Boring version: The case $M = (|E\rangle\langle E|)_E$ with $\tau \propto 1$. Cool version: Equilibrium entropy $S(\overline{\rho})$ associated with the tightest possible stationary constraint $\tau = \overline{\rho}$. (Note: constant in isolated systems.)

Entanglement entropy

Minimum for local M on entangled subsystems,

$$S_{\mathrm{ent}}(\psi_{AB}) = \inf_{M_A, M_B} S_{M_A \otimes M_B}(\psi_{AB}).$$

Compare global minimum $S(\rho) = \min_M S_M(\rho)$.

Wehrl entropy (Wehrl 1979)

The case of POVM $M=\left(\frac{|z\rangle\!\langle z|}{\pi}\right)_{z\in\mathbb{C}}$, where $|z\rangle$ are the overcomplete basis of coherent states, with $\tau \propto 1$, so

$$S_M^{\tau}(
ho) = -\frac{1}{\pi} \int dz \, Q \log Q, \quad Q(z) = \langle z |
ho | z \rangle.$$

Free energies

Can arise in many ways, see paper.

Rényi, Tsallis, and related entropies

Replace
$$D_M$$
 by generalized divergence. For Rényi, $S_{M,\alpha}^{\tau}(\rho) = S(\tau) - D_M^{\alpha}(\rho \| \tau) = -\log \langle (p_x/V_x)^s \rangle_{p_x}^{1/s}$

where $\alpha = 1 + s$, measures moments of prob-to-vol ratio.

Dynamical canonical entropy

The case $\tau(t) \propto \tau_A(t) \otimes \tau_B(t)$ with $\tau_A(t) \propto e^{-\beta_A(t)H_A}$, and so on, for local energy constraint in subsystems.

HEP coarse-/fine-grained entropies The cases $S(\tau)$ and $S(\rho)$, respectively.

Historical H-theorems

Boltzmann's H-theorems (Boltzmann 1872)

 $au = e^{-\beta H}/Z$ canonical prior (average energy conservation). $M_{P(E)}$ measures distribution of 1-particle energies. $M_{P(\vec{x},\vec{p})}$ measures distribution over 1-particle phase space.

$$S_{M_{P(E)}}^{\tau}(\rho) = C' - n \int P(E) \log \frac{P(E)}{E^{-\frac{d}{2}+1}} dE$$

$$S_{M_{P(\vec{x},\vec{p})}}^{\tau}(\rho) = C - n \int P(\vec{x},\vec{p}) \log P(\vec{x},\vec{p}) d\vec{x} d\vec{p}$$

Therefore Boltzmann's H-theorems are equivalent to

$$\frac{d}{dt}S_M^{\tau}(\rho) \ge 0.$$

(Strict non-negativity is due to his simplifying assumptions.)

• Gibbs H-theorem (XII of Gibbs 1902)

Uniform prior $au \propto 1$.

M cuts the full n-particle phase space into finite cells. Equivalent to

$$S_M(\rho_0) \le S_M(\rho_{t\to\infty})$$

in notation of (66-67) of Ehrenfest 1912.

von Neumann's quantum H-theorem (VN 1929) $au = \sum_E {
m Tr}(
ho\Pi_E) {\Pi_E \over {
m Tr}\,\Pi_E}$ mixture of microcanonical shells (a coarse version of $\overline{\rho}$).

M =anything coarser than "quantum phase cells" (ie. coarser than some M' that commutes with the Π_E) What vN calls $S(\mathbf{U}_{\psi}) - S(\psi)$ is equal to our $D_M(\rho \| \tau)$.

Thus von Neumann's H-theorem is of the form

$$S(\tau) - \overline{S_M^{\tau}(\rho)} \le \epsilon$$

of same form as our main equilibration theorems (Sec. VII).

Physical Examples

Different M capture different ways a state can be low entropy!

(Depicted: Prior $\tau = e^{-\beta H}/Z$, Measurement M = spatial, velocity, speeds, or thermodynamic.)

Heat exchange in a classical hard sphere gas versus quantum random matrix model.

(Depicted: Prior $\tau = e^{-\beta H}/Z$, Measurement M = coarse local energy measurements.)

Standard thermo = energy measurements/constraints on weakly coupled subsystems. Many second laws are important: mixing the pancakes versus letting them cool.

Second Laws and Thermodynamics

In the paper we show various entropy increase theorems that can be rigorously proved for $S_M^{\tau}(\rho)$ in both isolated and open systems, and discuss how these entropy increase theorems connect to thermodynamics. See paper.

References

[1] Joseph Schindler, Philipp Strasberg, Niklas Galke, Andreas Winter, and Michael G. Jabbour. Unification of observational entropy with maximum entropy principles. March 2025. arXiv:2503.15612 [quant-ph].

[2] John von Neumann. Proof of the ergodic theorem and the H-theorem in quantum mechanics. Translation of: Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. EPJ H, 35(2):201–237, November 2010.

[3] Dominik Šafránek, J. M. Deutsch, and Anthony Aguirre. Quantum coarse-grained entropy and thermodynamics. *Phys.*

Rev. A, 99(1):010101, January 2019.

[4] E. T. Jaynes. Information Theory and Statistical Mechanics. Phys. Rev., 106(4):620-630, May 1957.

This work was supported by a Beatriu de Pinós postdoctoral fellowship (2022 BP 00181) of the Ministry of Research and Universities of the Government of Catalonia under EU Horizon 2020 MSCA grant agreement No 801370.