\\ \title{
Causal structure of\\ \title{
Causal structure of BLACK HOLE EVAPORATION.
}

Goal:
 Show this diagram

(true penrose diagram for bh formation and evaporation)

and convince you that you care.

Step 1:
Context

What is A Black hole?

Astrophysical black holes.

(Gargantua, Thorne 2015)

(Cyg A, NRAO via Narayan 2015)

Theoretical black hole spacetimes.

Key feature: Trapped region leading to extreme curvature.

Penrose diagrams.

Visualizing a spacetime:

Penrose Diagram = GOOD

Everything you need To know about GR.

- spacetime $=$ manifold ($\mathrm{w} /$ one timelike dimension)
metric $\left(g_{\mu \nu}\right)$ encodes geometry:
- lightcones determine causal structure
- gravity from coupled matter-1 metric equs

(Wikimedia Commons)

(Nastase 2009)

Everything you need to know about GR.

> spacetime $=$ manifold $(w /$ one timelike dimension)

- metric $\left(g_{\mu \nu}\right)$ encodes geometry:

$$
\begin{array}{|c|c|c|}
\hline d s^{2}=d x^{2}+d y^{2} & d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) & d s^{2}=-d t^{2}+d r^{2}+r^{2} d \Omega^{2} \\
\text { (flat plane) } & \text { (sphere) } & \text { (flat spacetime) } \\
\hline
\end{array}
$$

- lightcones determine causal structure

(Wikimedia Commons)

(Nastase 2009)

Everything you need to know about GR.

- spacetime $=$ manifold (w/ one timelike dimension)
> metric $\left(g_{\mu \nu}\right)$ encodes geometry
- lightcones determine causal structure gravity from coupled matter-metric eqns: curvature relates to matter content partly through

Everything you need to know about GR.

- spacetime $=$ manifold (w/ one timelike dimension)
> metric $\left(g_{\mu \nu}\right)$ encodes geometry:
- lightcones determine causal structure
- gravity from coupled matter+metric eqns:

$$
S=S_{\text {grav }}+S_{\text {matter }}
$$

- curvature relates to matter content partly through $G_{a b}=8 \pi T_{a b}$

(Nastase 2009)

Everything you need To know about GR.

- spacetime $=$ manifold (w/ one timelike dimension)
> metric $\left(g_{\mu \nu}\right)$ encodes geometry:
- lightcones determine causal structure
- grauity from coupled mattar I matric aqns
- curvature relates to matter content, partly through $G_{a b}=8 \pi T_{a b}$.

total curvature	$=$	ricci part	+	traceless part
$\left(R_{a b c d}\right)$	\rightarrow	$\left(G_{a b}\right)$,	$\left(C_{a b c d}\right)$
	local			
matter				

(Nastase 2009)

QFT in CS.

- density matrix, pure states, mixed states
- each cauchy surface has a density matrix on its hilbert space
- HS is tensor product of local DOFs
- definition of particles/vacuum not unique
- classical wave basis \Leftrightarrow fock basis
- semi-classical limit from $\left\langle T_{\mu \nu}\right\rangle$
- locally flat \Rightarrow locally standard QFT

Step 2:

Motivation

Motivation.

black holes evaporate by emitting (approximately) thermal radiation

stuff goes in \Rightarrow hawking radiation comes out

Motivation.

- "information paradox"?

Motivation.

- not well posed

(Hawking $1975+$ annotation)

Motivation.

- doesn't correspond to any spacetime
- no cauchy surface
- everything happens at the bad point (P)
- singularity?
- general: no fake diagram contains any unknown information
- conclusion: not very useful (or worse!)
- goal: explicitly construct evaporating bh spacetime and compute diagram

(1993)

Step 3:

Explicitly Computed Penrose Diagrams

Algorithm.

New algorithm computes any diagram of the form

$$
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega^{2} .
$$

(Mink, Schwarz, R-N, dS, AdS, Ax-Kerr-Newm, Hayward, S-dS, S-AdS, ...)

- numerically computable with any number of horizons
- metric analytic across horizons
- slightly expands class of known diagrams

Schwarzschild BH.

penrose diagram

coordinate "time" slice

"schwarzschild radius" $R=\frac{2 G M}{c^{2}}$

STRONGLY SPHERICALLY SYMMETRIC SPACETIMES.

- function $f(r)$ specifies metric

$$
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

- horizons where $f=0$
- maximal extension vs. collapse/evap

STRONGLY SPHERICALLY SYMMETRIC SPACETIMES.

- function $f(r)$ specifies metric

$$
d s^{2}=-f(r) d t^{2}+f(r)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

- horizons where $f=0$
- maximal extension vs. collapse/evap

Penrose diagrams.

Shell collapse.

standard eternal bh from shell collapse

(well-defined piecewise junction yields a matter shell)

Step 4:

Non-Singular Black Holes

Singularity?

singularities:

- infinite curvature and density ... point mass
- classical GR breaks down
- remove w/ curvature cutoff?
removing singularity is restrictive:
- $r=0$ must be timelike (inner horizon forms)
- for strong spherical symmetry: $f(r) \sim 1+O\left(r^{2}\right)$ as $r \rightarrow 0$ why?
- keep curvature finite
- well-defined cartesian coordinates
- topological reasons

Non-singular BH.

Hayward spacetime: $f(r)=1-\frac{R r^{2}}{r^{3}+R l^{2}}$

metric function for hayward spacetime

$$
d s^{2}=-f(r) d t^{2}+f(r) d r^{2}+r^{2} d \Omega^{2}
$$

Non-Singular BH.

Hayward spacetime:

Non-SINGULAR BH.

Hayward spacetime:

curvature components in ON tetrad

Step 5:

BH Evaporation

Black Holes Radiate.

Orders of magnitude for BH evaporation:

mass (M)	radius $(R \propto M)$	temp $(T \propto 1 / M)$	lifetime $\left(t \propto M^{3}\right)$
$M_{S M B H} \approx 10^{38} \mathrm{~kg}$	1 au	$10^{-6} \mathrm{nK}$	$10^{81} \mathrm{GYr}$
$M_{\text {sun }} \approx 10^{30} \mathrm{~kg}$	1 km	100 nK	$10^{57} \mathrm{GYr}$
$M_{\text {earth }} \approx 10^{24} \mathrm{~kg}$	1 mm	100 mK	$10^{39} \mathrm{GYr}$
$M_{\text {yaks }} \approx 10^{9} \mathrm{~kg}$	proton	$10^{14} \mathrm{~K}(\mathrm{EWSB})$	1000 Yr
$M_{\text {antmegacolony }} \approx 10^{5.5} \mathrm{~kg}$	tiny	$10^{17} \mathrm{~K}$	1 s
$M_{\text {planck }} \approx 10^{-8} \mathrm{~kg}$	$2 l_{p}$	$10^{30} \mathrm{~K}(\mathrm{GUT})$	$10^{-40} \mathrm{~s}$

Simple blackbody spectrum.

Evaporation.

evidence for bh evaporation:

- classical bh thermodynamics

$$
d M=\frac{\kappa}{8 \pi} d A+\Omega d J+\Phi d Q
$$

- particle creation derivation
- euclidean "magic" thermal derivation
- particle tunneling models
- vacuum stress tensor derivation
- and more! (wiki derivation, rindler info derivation, AdS/CFT)

Evaporation.

evidence for bh evaporation:

- classical bh thermodynamics - suggestive

$$
d M=\frac{\kappa}{8 \pi} d A+\Omega d J+\Phi d Q
$$

- particle creation derivation
- doesn't require bh
- euclidean "magic" thermal derivation
- doesn't require bh
- particle tunneling models
- negative energy?
- vacuum stress tensor derivation
- distinguishes bh from flat space
- and more! (wiki derivation, rindler info derivation, AdS/CFT)

Evaporation.

- many closely intertwined derivations
- no single, clear, physical picture
(does a clear semiclassical description exist? we think yes)
- deep relation to entropy

Most important dynamical derivations.

particle creation

tunneling

spacelike tunneling

And now for the grand finale...

FORMATION AND EVAPORATION.

```
vinit =0.4
\[
\begin{aligned}
& \text { invt }-0.0>0.5>0.525>0.55>0.5>0.4>0.0 \\
& M=0.0>0.2
\end{aligned}
\]
\[
\Delta v=0.0>0.2>0.2>1.0>0.2>0.2>0.0
\]
```


FORMATION AND EVAPORATION.

FORMATION AND EVAPORATION.

$v_{i n i t}=0.4$
$M=0.0>0.5>0.525>0.55>0.5>0.4>0.0$ $\Delta v=0.0>0.2>0.2>1.0>0.2>0.2>0.0$

What now?

Upcoming papers...

- algorithm and the new basic diagrams
- f/e diagrams in asymptotically flat and asymptotically dS space w/ and w/o singularity
- more after do below

Things to do...

- put in correct $M(v)$, and extend to dS
- calculate junction $G^{\mu}{ }_{\nu}$ and compare to spacelike tunneling
- repeat Hawking effect derivations in these backgrounds and demonstrate self-consistency
- rotating regular bh projections?
- back to roots: entropy, local causal diamond description, stretched horizon description... using new perspectives

A sendoff.

$$
\begin{aligned}
& v_{\text {init }}=0.4 \\
& M=0.0>0.5>0.525>0.55>0.5>0.4>0.0 \\
& \Delta v=0.0>0.2>0.2>1.0>0.2>0.2>0.0
\end{aligned}
$$

Extra Slides

Algorithm.

- require only that $f\left(r_{0}\right)=0 \Longrightarrow f$ analytic at r_{0}
- double-null coords from

$$
r_{*}(r)=\int_{C_{r}} \frac{d z}{f(z)}
$$

- target metric is analytic at horizons

$$
d s^{2}=-\frac{4 \pi^{2}|f(r)|}{e^{k r_{*}(r)}} G_{u}(u, k) G_{v}(v, k) d \bar{u} d \bar{v}+r^{2} d \Omega^{2}
$$

- trivially extended to any number of horizons

Detail view.

zoom

Alternative methods.

Minkowski Space.

lines of constant radius

> lines of constant u, v

(Hayward 2006)

