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Abstract. We consider the response of accelerated detectors which couple to the components 
of the stress-energy tensor of the field linearly and locally. We show that these detectors 
become excited if put on an accelerated trajectory and evaluate the rate of excitation for 
the simple case when the coupling is to the trace of TIk. These results arise from the fact 
that detectors respond to the power spectrum of the two-point function (01 T,,(X) T,,,(y)IO) 
rather than to (OlT8k10)reg. The latter quantity vanishes in the accelerated frame but the 
former does not. The consequences of the result are discussed. 

1. Introduction and motivation 

In order to measure physical variables related to a field, we need a system (‘detector’) 
which couples to the field in some form. The response of such a detector will depend 
on: (i)  the state of the field, (ii) the nature of the coupling and (iii) the state of motion 
of the detector. 

One of the simplest such models involves a massless scalar field 4(x)  and a detector 
coupled locally and linearly to the field variable c$(x). The interaction Hamiltonian 
for such a system will be 

c 

where p is a variable characterising the detector and x ~ ( T )  is the trajectory of the 
detector with 7 being the proper time. We shall call this system a ‘field-coupled 
detector’ ( FCD). 

Let us assume that the scalar field is in the vacuum state IO),, defined in the usual 
way in an inertial Minkowski coordinate system. Since we have now specified both 
the state of the quantum field and the coupling of the detector, the response of the 
detector depends only on the trajectory of the detector: ~‘(7). It is well known that 
the detector will not ‘click’ (by which we mean, it will not make a transition from an 
internal energy state IE,) to a state IE,) with E ,  > Eo; the term ‘click’ is used in this 
sense throughout this paper) while in an inertial motion but will click while in a 
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uniformly accelerated motion (Unruh 1976, DeWitt 1979). In fact, the detector will 
click in a wide variety of non-inertial motions of which the uniformly accelerated 
trajectory (UAT) is just a special case (for an explicit construction of such trajectories 
see Letaw (1981) and Padmanabhan (1982)). The rate of excitation of the detector is 
determined by the power spectrum of the Wightman function 

t C C  

R ( w ;  ~ ‘ ( 7 ) )  = d r  e-’”’(O)p(x(s+~))&(x(s))10) ( 2 )  L 
which can be independent of s for a large class of motions (for details, see the references 
cited above). 

Given the trajectory of the detector x ‘ ( T ) ,  one can set up a proper non-inertial 
coordinate system S for the detector. For a large class of x’(r)-which includes 
UAT-this non-inertial frame will be stationary, i.e. the components of the metric tensor 
in S will be independent of the proper time 1: One can apply quantum field theory 
in S using mode functions which are positive- (or negative-) frequency components 
with respect to T. This allows one to define creation and annihilation operators (a : ,  a ,  
for each mode) and a vacuum state in the non-inertial frame. The expectation 
value of the operator (aza,) in the Minkowski vacuum 

N ( w )  = I(Olata,lO), (3) 

may not (in general) vanish. In particular, for UAT the quantities R ( w )  and N ( w )  
happen to be proportional to each other 

R ( w ) K  N ( w )  for UAT. (do 

This proportionality has led to somewhat incorrect and confusing ideas in the literature. 
Because of (4) one is tempted to conclude that: (i) the inertial vacuum is ‘populated 
by Rindler particles’ with a spectrum N ( w ) ,  ( i i )  the FCD of (1) is a ‘particle’ detector 
and (iii) that the FCD clicks in UAT because it detects the Rindler particles in IO), . Each 
of the above conclusions contains hidden subtleties and demands closer scrutiny. (Part 
of the problem, of course, is just semantics and can be eliminated by clear mathematical 
definitions; we are only concerned with subtleties relevant to physics.) 

To begin with, the extremely suggestive proportionality (4) does not hold true in 
general. There exists a large class of trajectories in which R ( w )  and N ( w )  have no 
interrelationship (see Letaw 1981, Padmanabhan 1982). In particular there are trajec- 
tories with 

R ( w )  # 0 N ( w )  = 0 (5) 

(the uniformly rotating frame being one such example). In other words, the detector 
will click even though the IO), does not contain any of the ‘non-inertial particles’ 
represented by the operator (a ’a) .  This fact shows that the conclusion (iii) above is 
incorrect. It is not the ‘presence of particles’ (i.e. existence of non-zero N ( w ) )  which 
is the reason behind the clicking of the detector. 

The conclusions (i) and (ii) are trickier. To settle (i), we have to define precisely 
the phrase ‘populated by Rindler particles’. This is a question of definition, and one 
possible reasonable definition is that a state I$) contains particles of a particular nature 
if (t,!la+al+) is non-zero, where a+ and a are suitably defined creation and annihilation 
operators. This is, for example, the definition that a condensed matter physicist would 
use to settle the existence (or otherwise) of quasiparticles in a state. If we accept this 
definition, then the inertial vacuum is populated by Rindler ‘particles’ but not by 
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‘particles’ based on a rotating frame quantisation. (Remember, however, that both 
rotating and uniformly accelerating detectors will click in IO),; as mentioned before 
there is no one-to-one correspondence between detector response ( R ( w )  # 0) and  the 
presence of particles ( N ( w )  f O).)  

Once we have settled on N ( w )  # 0 as our  definition for ‘existence of particles’, it 
follows that statement (ii) is somewhat misleading. The FCD is not a ‘particle’ detector 
in the sense that it does not in general measure N ( w ) ,  although it does so while in 
the inertial trajectory and  in UAT. 

We may, then, ask: why does this ‘detector’ respond, and  what exactly does it detect? 
The answer to the first question was always intuitively clear (see, e.g., DeWitt (1979, 

p 694 third paragraph) and  Birrell and Davies (1982, p 55, second paragraph)) and 
was explicitly demonstrated by one of the present authors (Padmanabhan 1985). It 
was shown using a n  explicit model for the accelerating mechanism that: (i) the 
accelerating source supplies energy to the detector and (ii) part of this energy is utilised 
for the detector to make an  internal transition from I&) to IE,) ( E ,  > E,) and the rest 
of the energy is radiated as field quanta in some mode k, changing the state of the 
field from IO), to Ilk). This is how a Minkowski observer will interpret the process (see 
Padmanabhan 1985). From the point of view of a Minkowski observer, the ‘detector’ 
is not detecting anything but is radiating; hence the question ‘what is it detecting?’ 
has no meaning in the Minkowski frame (compare this, for example, with the discussion 
in Unruh and  Wald (1984) in which a somewhat different interpretation is presented). 

The story is different in the accelerated frame. From (2) it is clear that the detector 
is responding to the power spectrum of the vacuum fluctuations of the field 4(x ) .  In 
other words FCD acts as a ‘fluctometer’ (Candelas 1980, Candelas and  Sciama 1983) 
and responds to the fluctuations in cp(x) .  We know that, even though the expectation 
value I ( O ~ ~ ( x ) ~ O ) l  vanishes, the fluctuations in 4, characterised by 

I(Ol4(f*, X ) 4 ( f * ,  x)IO),= -(1/471.2)(t2- t l - i&) r2  (6) 

d o  not. The Fourier transform of (6) 

vanishes for w > 0 when evaluated along an  inertial trajectory. However R ( w )  is not 
a covariant object and can be non-zero when evaluated along a different trajectory. It 
is this vacuum noise of 4 ( x )  which is seen by our ‘fluctometer’. 

Considering the importance of the issue, it is worthwhile to reinforce the above 
conclusions by different lines of argument. We shall d o  that in this paper by considering 
the response of detectors which couple linearly to the components of the stress-energy 
tensor TIk of the scalar field via the interaction Hamiltonian of the type 

H ,  = ~ T ~ , ’ ~ ( T ) T ~ ~ [ X ( T ) ]  I 
where p i k  is a suitable detector variable. We ask the question: will this ‘energy-coupled 
detector’ (ECD) click if put on an  accelerated trajectory? 

One may be tempted to answer that it will not, based on the following consideration. 
It has been repeatedly stressed in the literature that the regularised vacuum expectation 
value (VEV) of Tik  is a covariant object (assuming, of course, that a suitable covariant 
regularisation scheme is resorted to). Therefore, if ,(O/ vanishes in one frame 
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(in the Minkowski frame, say) then it must vanish in all frames and especially in the 
Rindler frame. Therefore, the detector will not click. 

This argument, however, is fallacious. It is perfectly true that [(01T'klO)l,reg is a 
covariant object and that it vanishes both in the inertial frame and in the accelerated 
frame. But the response of the ECD has nothing to do with the VEV l(OITiklO)l,reg! What 
the ECD will respond to is the power spectrum of the vacuum fluctuations in TIk, i.e. 

+cc 

%'k,(w) = d7 e-'" ' l(OlT'k(X(s+ T))T',(X(S))IO)I. (9) 

There is no reason for 1(01 TfkTJIIO), to vanish even though 1(01 T l k l O ) [  may vanish. This 
can be, in fact, seen very clearly by going back to our FCD. The VEV of 4 ( x ) ,  1(014(x)/O)l 
is certainly a covariant object and it certainly vanishes in both inertial and accelerated 
frames, but this does not prevent a detector coupled linearly to +(x)  from clicking as 
long as I ( O ~ ~ ( x ) ~ ( y ) ~ O ) l  has a non-zero power spectrum! The situation is identical in 
the case of the ECD where C#I is replaced by TIk. 

Thus there is no a priori reason for the detector coupled to TIk not to click when 
accelerated. We shall work out the details in O B  2 and 3 and will show that the ECD 

does click when accelerated. This result demonstrates that the 'detectors' like FCD or 
ECD are not actually responding to simple physical observables but are measuring the 
fluctuations in these observables. This conclusion has some interesting implications 
which we will discuss in the last section. 

2. The response of ECD 

Consider an ECD described by the coupling in (8). We are interested in the transition 
amplitude between an initial state 

11) = lE0)OlO) (10) 

IF) = /El)O19) (11) 

and a final state 

where lEO) and IE,) characterise the internal energy states of the ECD (with E ,  > Eo),  
(0) is the Minkowski vacuum state for the field, and 19) is the final state of the field. 
To the lowest order in the coupling the transition amplitude is given by 

A(Ei,  Eo; 9, o ) =  
+cc 

d7 (Flp 'k (T)TkI (X(T)) / l )  

+cc 

= d7 (El111'k(7)1EO)(91TkI(X(7))/0) (12) 
-cc 

where x ' ( T )  is the trajectory of the detector and T is the proper time. Making the 
usual assumption that (see, e.g., DeWitt 1979, equation (14-9)), 

p 1 k ( 7 )  = elHoT p'k(0)  e-IHoT (13) 

where Ho is the Hamiltonian operator governing the internal dynamics of the detector, 
we can write ( w  = E ,  -E,> 0) 

+CU 

A ( E l ,  EO; rcI, 0) = (EIIp'k(0)lEo) d~ e ' " T ( 9 ~ ~ k l [ ~ ( ~ ~ 1 / 0 ) .  (14) 
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Let us now consider the quantity ($lTkl(x)lO). Since 

T ' k  = d'4dk4 - f s f k ( d " 4 ) ( d , 4 )  (15 )  
is quadratic in 4 (and hence in creation and annihilation operators), ($lTkl(x)lO) can 
be non-zero only when I$) is the vacuum state 10) or when I$) is a two-particle state 
lip, 1,) labelled by the momenta (q,  p )  (of course, p = q is included as a special case). 
However, the VEV (0lTk,(x)lO) need not be considered. Formally, this is a divergent 
expression but is a constant independent of x: 

(16) 

(We have merely used the translation invariance of the vacuum.) Such a term will 
contribute to the integral in (14) only a 6 ( w )  term which vanishes because we are 
assuming w > O .  Therefore the contribution to (14) arises from the (lp,  l,/T'k(x)/O) 
term. Using the mode expansion 

( o ~ T ' ~ ( x ) ~ o )  = ( 0 1  e'&TTlk(0) e-'&IO) = ( O ~ T ' , ( O ) ~ O ) .  

in (15) and evaluating ( lp ,  l,lTik(x)/O) one obtains 

(The state Il,, 1,) is dejined to be aia:lO) in all expressions. It differs from the 
conventional two-particle state by a normalisation factor 1/J2 when p = q ;  it is easier 
to work with / I p ,  l,).) Instead of performing the calculation using (17) and (15 )  one 
can also guess most of the contents of (18)  by the following argument. Note that 

(19) 
The tensor ( lp ,  lq~Tzk(0)~O) must be constructed from a quadratic form made of pl and 
q k  such that: (i)  it is symmetric under the ( p ,  q )  interchange, (ii) it changes sign when 
the sign of p '  or q k  is reversed and (iii) it has zero dot product with (p+q) ' - so  that 
the conservation of Tfk(x) is assured. These conditions reduce the expression to a 
form proportional to ( p z q k  + p k q l  - 6 I k ( p .  4)). (The proportionality constant, however, 
has to be fixed by explicit computation giving the form in (18 ) ! )  

( lP,  l,jTlk(x)IO) = ( lP ,  I , /  eIAT',(0) e-'&Io) = el(p+qjx(lp, l,IT'k(0)/O). 

Using (18 )  and (14) we can write the transition amplitude to be 

1 1 +m 

( p l q k  +pkq'  - s Z k ( p  4 ) )  e1(p+9jx (20) ( 2w,) l'* ( 2 w p 2  
d T  e1W.r ~ ~ J-, A ( w ;  P, 4 )  = - - ( y k z  

where we have used the notation a k l  =(E,lak,(0)lEo).  We are, however, interested in 
the probability P that the ECD makes the transition from Eo to E ,  irrespective of the 
final state of the field. Therefore we have to sum lA12 over the final field states to 
obtain P :  
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where 

hab=(paqb+phqa - 6 " b ( p *  4 ) )  (23)  

X i  = X ' ( T 1 )  X i  = X I (  7 2 ) .  (24)  

and 

Interchanging the orders of integration we can write P ( w )  as 

dT1 d72 exp[iw( T~ - 72)]a k l ~ m , % l n k m ( x z  - X I )  (25)  

where 

= (0ITflm(x2) Tik(Xl)lO)reg. (26)  
This integral can be evaluated by a series of steps. First, put x2 = x1  + x and consider 
the quantity 

Now 

where s 2 = x i x ,  and W =  (4.rr2s2)-' with the understanding that there is an (i.) in xo. 
Since (with W ' = d  W/ds2, etc) 

d2 W ( s ' )  = 2- a X i  [ ( s)2x"] 
ax, ax, 

= 2 W ' ( s Z ) g " ' + 4 W " x ' x "  = ( 2 W / s 4 ) ( 4 x 1 x "  -g" 's2)  (30)  

F ' " k m ( ~ ) = ( 4 W 2 / ~ 8 ) ( 4 ~ 1 ~ n  - g " ' ~ ~ ) ( 4 ~ " "  -gkms2) .  ( 3 1 )  

we can write (28) as 

The hLkhnm of (26)  is just 
htkh'" =p)"qkqm+pkpflq'qm - g " " ( p  9 q ) p ' q k  

- g t k ( p  q ) p " q m  + + g C k g n m ( p  - q)*+ (terms p -  q )  (32)  
so that the integral in (26)  can be expressed in terms of the combinations of F'" k m ( ~ ) .  

Performing this algebra we obtain ( F  = gabgcdFaCbd): 
% i n k m ( X )  = 2(Flnkm + Fknlm - g n m g a b ~ ~ a k b  - g ~ k g u b ~ a n b m  +1 Ik nm 

2g g F?  
= ( 8  W * / S ~ ) [ ~ ~ X ' X " X ~ X "  
- 4s2(g'"xkxm + gkmx'xn + gknxjxm 

+ g l m X k X n  +2gnmxrxk  + 2g'kx"xm)] 

E ( 8  W 2 / ~ s ) [ A ' " k m ( ~ )  + S ~ C " ' ~ ' " ( X )  - S ~ B ' " ~ ~ ( X ) ] .  (33)  
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To obtain the response of the detector, one must specify the form of the detector 
variable aik = (EiIa,k(O)/En). Using the notation A(x)  = aika,mA'nkm, etc, equation (25) 
becomes (with T~ = T] + T) 

1 I d  T e-'wT . (A-Bs2+Cs4) 
S I 2  

71 
-- - 

2.n4 --m 
(34) 

The quantity ( A -  Bs2+Cs4)/s i2  depends only on the vector X ~ ( T ~ ) - - X ' ( T , ) ,  but in 
general this expression will depend on both 7, and r2 rather than just on r2 - r1 = T. 
(s2 in the accelerated frame depends only on r2 - T ~ ,  but A, B, C can depend in general 
on both T~ and T~.) Therefore the quantity 

should be interpreted as the (time-dependent) rate of transition from ]En) to IE,). In 
the special case where R is independent of T~ this expression will give a steady rate 
of transition. (The interpretation of R as a rate of transition is somewhat tricky when 
it depends on rl; for a careful discussion of this point see, e.g., Letaw (1981) and 
Birrell and Davies (1982). Our main conclusions, however, are independent of this 
interpretational issue.) We shall now see what can be said about R ( w ,  T ~ )  under various 
circumstances. 

3. Specific examples of ECD 

In order to demonstrate explicitly the behaviour of accelerated ECD we shall consider 
a simple specific example. Later we shall consider the more general situation. 

The simple example we will take is the one in which p i  has the form 

p i , ( T ) = p ( T ) 6 ;  (36) 

so that the detector actually couples to the trace of the stress tensor T " , ( x ) :  

H I  = ~ ( T ) T ( x ( T ) )  d.r. (37) 5 
The form in (36) has the important advantage of being invariant-having the same 
form in both inertial and accelerated frames. The response of this detector is decided 
by the function (01 T ( x 2 )  T(x,)lO) which can be obtained from our general expression 
for ieinkm by suitable contractions: 

8W2 12 1 
T 4  s8 

( O ~ T ( X ~ ) T ( X , ) ~ O ) =  Y l n b u b = ~ ( 2 4 s 4 ) = -  -. 

The rate of transition of the detector, given by (35), becomes 

12a2 
R ( w ,  T ~ )  =T d 7  e-iwT (5) = R ( w )  

-m 
(39) 

(where a =(Eilp(O)lEn)). 

the FCD. 

We notice that the rate R is independent of T ~ ,  reminiscent of the situation with 
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Consider first an ECD in an inertial trajectory x = constant. We do not expect it to 
click and, in fact, it does not: 

(For w > 0 the integral can be evaluated by closing the contour on the lower complex 
plane; the pole is at T = is on the upper plane.) 

Next consider the uniformly accelerated trajectory: x = g-' cosh gT, t = g-' sinh gT, 
y = z = 0. It is easy to show that 

(41) s ~ ( x ( T ~ ) ,  ~ ( 7 ~ ) )  = ( 2 g - ' ) 2 s i n h 2 + g ( ~ 2 - ~ 1 - i ~ )  =,sinh 4 2 1  Tg(T-iE) 
g 

so that R ( w  ) becomes 

12ff2 +n e+' 
R " A T ( W )  = 7 dr(2/g)8 s i n h ' [ g ( ~ - i ~ ) / 2 ]  

e -i ul 

dl  
3 2 r 4  sinh8( 1 - ie)  
3ff2g7 += -- - 

where we have substituted T = (2l/g) and v = 2w/g. This integral can be again evaluated 
by completing the contour on the lower complex plane for v > 0. (The function 
sinh(z -it-) vanishes along the imaginary axis for y = - n r +  E, with n = 0 ,1 , .  . . , etc. 
Each of these is an eighth-order pole.) It can be shown (using Gradshteyn and Ryzhik 
1965, p 305 3.314, p 950 8.384 ( l ) ,  p 937 8.331, 8.332) that 

so that R becomes 

(Note that R is positive definite and has the correct dimension.) Equation (44) is a 
main result of this paper; it shows that an accelerated detector coupled to the trace of 
Tik  will be excited in an accelerated frame. Moreover, the response function has a 
Planckian form with temperature T = g / 2 r  modified by a polynomial in w. 

Equipped with this knowledge, we can easily see that similar results should hold 
for the more general coupling p f k T t k  considered previously. In the general case we 
found that R ( w )  is given by (equation (35)) 

The quantities A and B are quartic and quadratic expressions of the coordinates x i  
and hence are analytic functions of T. Therefore the poles of the integrand (in the 
lower complex plane) occur at the zeros of s2,  which are on the imaginary axis, at 
z, =-inn-. In other words R ( w )  will be non-zero and has a Planckian form (due to 
C) modified by the A and B. This argument also shows that an ECD with any form 
of coupling will not click while on an inertial trajectory (because the pole of ( t  - ie)" 
is on the upper complex plane) which is rather reassuring. 
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Lastly, one may ask whether there exist other forms of p>  for which R ( w )  can be 
interpreted in a simple manner. We know that the only second-rank mixed tensor 
which has the same form in all frames should be proportional to 8 ; .  If we choose 
some other form for p> then the detector will have a simple interpretation either in 
the inertial frame or in the accelerated frame but not in both. Let us denote by xi' the 
Rindler coordinates, related to the inertial coordinates x i  by 

(46) 

Po0 0 p.. = 0 for i # O , j # O  (47) 

3 - 3' xo = xl' sinh gxo' XI = XI' cosh gxo' x2 = x2' x - x .  

If we assume, for example, that pij has the form 

then one may consider the ECD to couple to the Too component in the inertial frame. 
But in the accelerated frame p i7t will have complicated components 

( W A O ,  w;1, PA11 # 0 ph=O for i , j # O ,  1 (48) 

so that pi?, Ti?'= p&oT'00+2p&l TIo1+ pil TI" couples to a strange mixture of T f V  
components. Of course, the combination pVTU is covariant but it does not have the 
simple interpretation of measuring the same quantity in both the frames. This is in 
contrast to the case with p > a S> where the ECD couples to the trace of Tik  in all frames. 

For the sake of illustration, we give below the resulting R ( w ) ,  when piJ has only 
the 00 component in the accelerated frame, i.e. 

PI'' = 0 for i ' ,  j '  # 0 p'OO # 0 (49) 
so that it couples to the Too component in the accelerated frame. The p U  will have 
(p", pol and p" )  components non-zero in the inertial frame. (It is a very strange 
kind of detector in the inertial frame and the reader is justified in thinking that this is 
a mathematical artificiality. As we said before, we give this result purely as a curious 
illustration.) The R ( w )  can be evaluated either by transforming p U  to the inertial 
frame and using our general result or by carefully transforming (18) to the Rindler 
frame and repeating the calculation. Either way, we obtain 

indicating a modified Planckian structure. 
We shall now consider the consequences of our result. 

4. Interpretation and discussion 

In classical field theory simple relationships exist between a field, its energy density, 
momentum density, etc. If a classical field, say an electromagnetic field, vanishes then 
so does its energy density, momentum, etc. It is also usual to assume that the fields 
are observable by suitable arrangements. For example, a charged particle can be used 
to measure the electromagnetic field. 

Quantum theory changes this situation with the introduction of the Fock basis and 
the concept of 'particles' associated with the field. Even though a state of 'no particles'- 
namely a vacuum-can be introduced, field fluctuations exist in this state. (Since the 
field 4 and the number operator u t a  do not commute they cannot be simultaneously 
diagonalised.) The expectation value of the field does not determine the expectation 
value of other physical observables because of the existence of these fluctuations. 
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Quantum theory also changes the concept of measurements. A charged particle 
kept in an  electromagnetic field interacts with the field via emission and absorption 
of photons. Therefore one may take the point of view that charged particles are actually 
detecting the photon content of a state rather than the field content of the state. In  
other words, we lose all our ability to measure 4 or T t k ( x )  or any other observable directly; 
any detector used to measure 4, Tlk (x ) ,  etc, can only couple such field variables via 
the exchange of quanta. This, however, does not create any special difficulty as long 
as we are only concerned with a Lorentz-invariant field theory. If particles are conceived 
as being Eorentz invariant, then all inertial observers will agree on the results of the 
measurement of any observable. 

The trouble begins when we introduce accelerated observers. Since the concept of 
a particle is not generally covariant, accelerated observers will see a different particle 
content compared to an  inertial observer in any quantum state. What is more, the 
accelerated and  inertial observers will arrive at diflerent results for the measurement 
of any physical observable. This is a direct consequence of the philosophy that detectors 
interact with observables only via the emission and absorption of quanta. In other 
words, we have a complete breakdown of operational general covariance. 

It is convenient (and necessary) to distinguish between ‘formal covariance’ and 
‘operational covariance’ of an  observable. The number operator ( a + a )  for example 
is neither formally nor operationally covariant. (Every observer defines this observable 
differently.) On the other hand, the energy-momentum tensor Tik or some scalar 
functional A( 4)  of the field 4 are formally covariant objects. These operators as well 
as their expectation values (+IT,,I+) transform in a systematic tensorial manner. It 
has always been assumed that if Tlk and Tr lk  are obtained from one another by a 
tensorial coordinate transformation then the observers using the corresponding coordin- 
ates x‘ and x” will actually measure the values as TI, and TIlk.  This assumption (valid 
classically) is not valid in quantum theory. Any operational procedure devised to 
measure T,,-say, by a detector coupled to T’,, like the EcD-will go about performing 
this measurement by emission and absorption of quanta and hence will respond 
differently in inertial and  accelerated trajectories. In other words, even though the 
formal covariance is assured by the relation 

the operational covariance is completely lost in quantum theory. The objects like 
(01 Trrk  10) have no operational significance. 

Any reader who suspects the above conclusion is strongly urged to construct a 
detector model which will satisfy the following criteria: (i) it detects Ttk of a field in 
the inertial frame (and hence does not click in the inertial vacuum), (ii) it does not 
click when accelerated and  (iii) the coupling is local, causal and does not involve 
expectation values of operators. (For example, an  unusual detector coupling like 
p l k ( 0 /  T’klO),,g will remain zero in all frames, but it is not a realisable operator-operator 
coupling.) We d o  not believe it is possible to construct a detector satisfying these 
criteria. In other words, formal expressions like ( rk)reg have no operational 
significance. 

Does this mean that quantum theory cannot be covariant at all? That is not 
necessarily the case. Most of the comments in the previous paragraph apply to situations 
in which the quantum state of the system is in a Fock basis state. Fock basis is 
introduced as the eigenbasis of the number operator, which-we know-is not 
covariant. The situation can be improved using the basis in which the field operator 
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4(x )  is diagonal. The response of detectors in such states form an  interesting subject 
of study; the results will be published separately. 

One might question whether the ECD discussed in this paper should be considered 
as ‘measuring’ T , k .  For example, one can invoke the notion that ‘something measures 
T , k  only if it gives T , k  as the answer’. We d o  not think this attitude helps matters in 
any way. (i) Firstly, it would be impossible to construct a detector which measures 
only x k  in every frame. One has, therefore, to use (presumably) different forms of 
coupling for detectors in different trajectories. (ii) Secondly, note that a detector like 
ECD does measure Tik in the classical o r  semiclassical limit. The failure of the ECD to 
respond to T ’ k  alone is a feature directly related to the inevitability of quantum 
fluctuations. We believe that this feature has some fundamental significance. 

Finally, we would like to comment on the role of gravity and the expectation value 
of T k .  One may ask: can one observe the value of ( o l T i k / O ) r e g  by measuring the 
gravitational field it produces? In fact, one can, but not in a fundamental manner. 
This can easily be seen by considering the linearised limit of Einstein’s equations 

This is equivalent to a detector coupling (remember that in this case our ‘detector’ is 
the gravitational field i l k )  of the form h;k(o1   lo),,,. This is purely classical and cannot 
be fundamental. On the other hand, one may try to work out the gravitational 
fluctuations in the weak field limit by using equation ( 5 2 )  without the expectation 
value on the right-hand side. Then one would use a fully quantum mechanical coupling 
and the existence of non-zero correlation (Olh,kh,,,, 10) would signal the existence of 
fluctuations in Tlk .  Thus, even though a semiclassical gravitational field h l k  of ( 5 2 )  
might give some information about Tzk,  it does not provide the kind of information 
which we expect from a detector measuring T k .  These questions, as well as the 
behaviour of the ECD in curved spacetime, are under investigation. 
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