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PREFACE

The purpose of these three studies is an inquiry into the essence of the “information’
conveyed by channels of communication, and the application of the results of this inquiry
to the practical problem of optimum utilization of frequency bands.

In Part 1, a new method of analysing signals is presented in which time and frequency
play symmetrical parts, and which contains “time analysis” and ‘‘frequency analysis” as
special cases. It is shown that the information conveyed by a frequency band in a given
time-interval can be analysed in various ways into the same number of elementary *“‘quanta
of information,” each quantum conveying one numerical datum.

In Part 2, this method is applied to the analysis of hearing sensations. It is shown
on the basis of existing experimental material that in the band between 60 and 1 000 ¢/s
the human ear can discriminate very nearly every second datum of information, and
that this efficiency of nearly 50% is independent of the duration of the signals in a remark-
ably wide interval. This fact, which cannot be explained by any mechanism in the inner
ear, suggests a new phenomenon in nerve conduction. At frequencies above 1000 c/s
the efficiency of discrimination falls off sharply, proving that sound reproductions which
are far from faithful may be perceived by the ear as perfect, and that *“‘condensed” methods
of transmission and reproduction with improved waveband economy are possible in

rinciple.
P In I?art 3, suggestions are discussed for compressed transmission and reproduction of
speech or music, and the first experimental results obtained with one of these methods
are described.

Part 1. THE ANALYSIS OF INFORMATION

SUMMARY

Hitherto communication theory was based on two alternative
methods of signal analysis. One is the description of the signal as a
function of time; the other is Fourier analysis. Both are idealizatipns,
as the first method operates with sharply defined instants of time,
the second with infinite wave-trains of rigorously defined frequencies.
But our everyday experiences—especially our auditory sensations—
insist on a description in terms of both time and frequency. In the
present paper this point of view is developed in quantitative language.
Signals are represented in two dimensions, with time and frequency
as co-ordinates. Such two-dimensional representations can be called
“information diagrams,” as areas in them are proportional to the
number of independent data which they can convey. This is a con-
sequence of the fact that the frequency of a signal which is not of
infinite duration can be defined only with a certain inaccuracy, which
is inversely proportional to the duration, and vice versa. This
‘“uncertainty relation” suggests a new method of description, inter-
mediate between the two extremes of time analysis and spectral
analysis. There are certain ‘“‘elementary signals” which occupy the
smallest possible area in the information diagram. They are harmonic
oscillations modulated by a “probability pulse.” FEach elementary
signal can be considered as conveying exactly one datum, or one
“quantum of information.” Any signal can be expanded in terms
of these by a process which includes time analysis and Fourier analysis
as extreme cases.

These new methods of analysis, which involve some of the mathe-
matical apparatus of quantum theory, are illustrated by application
to some problems of transmission theory, such as direct generation
of single sidebands, signals transmitted in minimum time through
limited frequency channels, frequency modulation and time-division
multiplex telephony.

* Radio Section paper.
t British Thomson-Houston Co., Ltd., Research Laboratory.

(1) INTRODUCTION

The purpose of this study is to present a method, with some
new features, for the analysis of information and its transmission
by speech, telegraphy, telephony, radio or television. While
this first part deals mainly with the fundamentals, it will be
followed by applications to practical problems, in particular to
the problem of the best utilization of frequency channels.

The principle that the transmission of a certain amount of
information per unit time requires a certain minimum wave-
band width dawned gradually upon communication engineers
during the third decade of this century. Similarly, as the prin-
ciple of conservation of energy emerged from the slowly hardening
conviction of the impossibility of a perpetuum mobile, this funda-
mental principle of communication engineering arose from the
refutation of ingenious attempts to break the as yet unformu-
lated law. When in 1922 John Carsonl! disproved the claim
that frequency modulation could economize some of the band-
width required by amplityde-modulation methods, he added
that all such schemes “are believed to involve a fundamental
fallacy.” This conviction was soon cast into a more solid shape
when, in 1924, Nyquist!2 and Kiipfmiiller!-3 independently
discovered an important special form of the principle, by proving
that the number of telegraph signals which can be transmitted
over any line is directly proportional to its waveband width.
In 1928 Hartley!4 generalized this and other results, partly by
inductive reasoning, and concluded that ‘“‘the total amount of
information which may be transmitted . . . is proportional to
the product of frequency range which is transmitted and the
time which is available for the transmission.”

Even before it was announced in its general form, an applica-
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tion was made of the new principle, which remains to this day
probably its most important practical achievement. In 1927,
Gray, Horton and Mathes!-5 gave the first full theoretical dis-
cussion of the influence of waveband restriction on the quality
of television pictures, and were able to fix the minimum wave-
band requirements in advance, long before the first high-definition
system was realized. In fact, in this as in later discussions of
the problem, the special Nyquist-Kiipfmiiller result appears to
have been used, rather than Hartley’s general but somewhat
vague formulation.

The general principle was immediately accepted and recognized
as a fundamental law of communication theory, as may be seen
from its discussion by Liischen!:6 in 1932 before this Institution.
Yet it appears that hitherto the mathematical basis of the prin-
ciple has not been clearly recognized. Nor have certain practical
conclusions been drawn, which are suggested by a- more rigorous
formulation.

(2) TRANSMISSION OF DATA

Let us imagine that the message to be transmitted is given in
the' form of a time function s(f), where s stands for “signal.”
Unless specially stated, s will be assumed to be of the nature
of a voltage, current, field strength, air pressure, or any other
“linear”’ quantity, so that power and energy are proportional
to its square. We assume that the function s() is given in some
time interval #, — #; = 7 as illustrated in Fig. 1.1, Evidently
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Fig. 1.1.—Signal as a function of time.

this message contains an infinity of data. We can divide 7 into,
say, N sub-intervals, and define, for instance, the average ordinate
in each sub-interval as a “‘datum.” 1If there is no limit {o the
sub-division, there is no limit to the number of data which could
be transmitted in an absolutely faithful reproduction.

As this is impossible, let us see whether it is possible to transmit
faithfully at least a finite number N of data. Evidently there is

an infinite number of possibilities for specifying the curve s(¢)
in the interval T approximately by N data. Without knowing
the specific purpose of the transmission it is impossible to decide
which is the most economical system of selection and specifica-
tion. Yet, certain methods will recommend themselves by reason
of their analytical simplicity. One of these, division into equal
sub-intervals, has been already mentioned. Another method is
to replace the curve s(¢) in the interval 7 by a polynomial of
order N, to fit it as closely as possible to s(f) by the method of
least squares,-and to take the coefficients of the polynomial as
data. It is known that this method is equivalent to specifying
the polynomial in such a way that its first N “moments”’ M,
shall be equal to those of s(f):—

T T T T
M, = J‘sdt M, = Jtsdt M, = J‘tzsdt My = LtN—lsdt
0 0 0

Instead of the coefficients of the polynomial, we can also con-
sider these moments as the specified data.
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A method closely related to this is the following. Expand
s(2), instead of in powers of time, in terms of a set of N func-
tions ¢k(t), orthogonal in the interval 0 < ¢ < 7, and consider
as data the N coefficients of expansion. It is known that this
is equivalent to fitting the expansion to s(f) by the method of
least squares.* How close: the fit will be, and how well it will
suit the practical purpose, depends on the set of functions
selected.

One class of orthogonal functions, the simple harmonic func-
tions sine and cosine, have always played a preferred part in
communication theory. It is shown in Appendix 9.1 that
there are good reasons for this preference other than their
elementary character. Let us now develop the curve s(¢) in the
interval 7 into a Fourier series. This gives an infinite sequence
of spectral lines, as shown in Fig. 1.2, starting with zero fre-
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Fig. 1.2.—Fourier spectrum of signal in an interval .

quency, all equally spaced by a frequency 1/7. Two data are
associated with each frequency, the coefficients of the sine and
cosine terms in the expansion. In a frequsncy range {(f; — f})
there are therefore (f, — f{)7 lines, representing 2(f; — )7
data, that is exactly two data per unit time and unit frequency
range.

This, in fact, proves the fundamental principle of communica-
tion. In whatever ways we select N data to spec’fy the signal
in the interval T, we cannot transmit more than a number
2(f, — f))7 of these data, or of their independent combinations
by means of the 2 f, — f,)7 independent Fourier coefficients.

In spite of the extreme simplicity of this proof, it leaves a
feeling of dissatisfaction. Though the proof shows clearly that
the principle in question is based on a simple mathematical

identity, it does not reveal this identity in a tangible form.
Besides it leaves some questions unanswered: What are the

effects of a physical filter? How far are we allowed to sub-divide
the waveband or the time interval? What modifications would
arise by departing from the rigid prescription of absolute inde-
pendence of the data and allowing a limited amount of mutual
interference? It therefore appears worth while to approach the
problem afresh in another way, which will take considerably
more space, but which, in addition to physical insight, gives an
answer to the questions which have been left open.

(2.1) Time and Frequency

The greatest part of the theory of communication has _been
built up on the basis of Fourier’s reciprocal integral relationst

s(t) = J;(f)emﬂdf S(f) = J s(t)e—27ids (1.1

—00 —c0

* Cf.e.g. CHURCHILL, RUEL V.: “‘Fourier Series and Boundary Value Problems”’
(McGraw Hill, 1941), p. 40. This book contains an introduction to the theory of
orthogonal functions. i

1 The notations used will follow in the main those of Campbell and Foster.!:?
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where s(r) and S(f) are a pair of Fourier transforms. We will
refer to S(f) also as the “spectrum’ of s(f).

Though mathematically this theorem is beyond reproach, even
experts could not at times conceal an uneasy feeling when it
came to the physical interpretation of results obtained by the
Fourier method. After having for the first time obtained the
spectrum of a frequency-modulated sine wave, Carson wrote:!-!
“The foregong solutions, though unquestionably mathematically
correct, are somewhat difficult to reconcile with our physical
intuitions, and our physical concepts of such ‘variable-fre-

quency’ mechanisms as, for example, the siren.”

" The reason is that the Fourier-integral method considers
phenomena in an infinite interval, sub specie aeternitatis, and
this is very far from our everyday point of view. Fourier’s
theorem makes of description in time and description by the
spectrum, two mutually exclusive methods. If the term ‘‘fre-
quency”’’ is used in the strict mathematical sense which applies
only to infinite wave-trains, a “‘changing frequency’’ becomes a
contradiction in terms, as it is a statement involving both time
and frequency.* .

The terminology of physics has never completely adapted itself
to this rigorous mathematical definition of “frequency.” In
optics, in radio engineering and in acoustics the word has retained
much of its everyday meaning, which is in better agreement with
what Carson called “our physical intuitions.”” For. instance,
speech and music have for us a definite “‘time pattern,’”” as well
as a frequency pattern. It is possible to leave the time pattern
unchanged, and double what we generally call ‘‘frequencies’’ by
playing a musical piece on the piano an octave higher, or con-
versely it can be played in the same key, but in different time.
Evidently both views have their limitations, and they are com-
plementary rather than mutually exclusive. But it appears that
hitherto the fixing of the limit was largely left to common sense.
It is one of the main objects of this paper to show that there
are also adequate mathematical methods available for this
purpose.

Let us now tentatively adopt the view that both time and
frequency are legitimate references for describing a signal, and
illustrate this, as in Fig. 1.3, by taking them as orthogonal co-
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Fig. 1.3.—Unit impulse (delta function) and infinite sine wave in
time/frequency diagram.

ordinates. In this diagram a harmonic oscillation is represented
by a vertical line. Its frequency is exactly defined, while its
epoch is entirely undefined. A sudden surge or “delta functiont
(also called ‘“‘unit impulse function’’), on the other hand, has a
sharply defined epoch, but its energy is uniformly distributed
over the whole frequency spectrum. This signal is therefore

* Carson proposed the concept of a “‘generalized frequency” in 1922, and in 1937
claborated it further with T. C. Fry under the name of “instantaneous frequency”
(Ref. No. 1.8). This is a useful notion for slowly-varying frequencies, but not sufficient
to cover all cases in which physical feeling and the Fourier integral theorem are
at variance.

t Campbell and Foster call this an &g function, but the name “delta function” as
used by Dirac has now wider currency.
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represented by a horizontal line. But how are we to represent
other signals, for instance a sine wave of finite duration?

In order to give this question a precise meaning we must
consider the physical effects which can be produced by the signal.
The physical meaning of the s(f) curve, shown at the left of
Fig. 1.4, is that this is the response of an ideal oscillograph
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Fig. 1.4.—Time/frequency diagram of the response of physical instru-
ments to a finite sine wave.

which has a uniform response over the whole infinite frequency
range. The interpretation of the Fourier spectrum, shown at
the bottom of the same figure, is somewhat less simple. It could
be obtained by an infinite number of heterodyne receivers, each
of which is tuned to a sharp frequency, and connected with an
indicating instrument of infinite time-constant. To simplify
matters we take instead a bank of reeds, or other resonators,
each tuned to a narrow waveband, with equally spaced resonant
frequencies. It is known that such an instrument gives only an
analysis of the energy spectrum, as it cannot distinguish phases,
but this will be sufficient for the purpose of discussion. Let us
compare this instrument with a real oscillograph, which responds
only to a certain range of frequencies (f, — f;). For simplicity
it has been assumed in Fig. 1.4 that the bank of reeds extends
over the same range, and that the time-constant of the reeds is
about equal to the duration of the signal.

We know that any instrument, or combination of instruments,
cannot obtain more than at most 2(f, — f;)7 independent data
from the area (f, — f{)7 in the diagram. But instead of rigor-
ously independent data, which can be obtained in general only
by calculation from the instrument readings, it will be more
convenient for the moment to consider ‘“practically”’ indepen-
dent data, which can be obtained by direct readings. For any
resonator, oscillograph or reed, a damping time can be defined,
after which oscillations have decayed by, say, 10 db. Similarly
one can define a tuning width as, say, the number of cycles off
resonance at which the response falls off by 10db. 1t is well
known that in all types of resonators there is a relation between
these two of the form:

Decay time X Tuning width = Number of the order one.

This means that for every type of resonator a characteristic
rectangle of about unit area can be defined in the timeffrequency
diagram, which corresponds to one “practically’’ independent
reading of the instrument. In order to obtain their number,
we must divide up the (time X frequency) area into such rect-
angles. This is illustrated in Figs. 1.4(a) and 1.4(b). In the
case of the oscillograph the rectangles are broad horizontally
and narrow vertically: for the tuned reeds the reverse. The
amplitude of the readings is indicated by shading of different
density. Negative amplitudes are indicated by shading of
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opposite inclination. We will return later to the question of a
suitable convention for measuring these amplitudes.*

Without going into details, it is now evident that physical
instruments analyse the time-frequency diagram into rectangles
which have shapes dependent on the nature of the instrument
and areas of the order unity, but not less than one-half. The
number of these rectangles in any region is the number of inde-
pendent data which the instrument can obtain from the signal,
i.e. proportional to the amount of information. This justifies
calling the diagram from now on the “diagram of information.”’

We may now ask what it is that prevents any instrument from
analysing the information area with an accuracy of less than a
half unit. The ultimate reason for this is evident. We have
made of a function of one variable—time or frequency—a func-
tion of two variables—time and frequency. This might be
considered a somewhat artificial process, but it must be remem-
bered that it corresponds very closely to our subjective inter-
pretation of aural sensations. Indeed, Fig. 1.4(b6) could be
considered as a rough plan of analysis by the ear; rather rough,
as the ear is too complicated an instrument to be replaced by a
bank of tuned reeds, yet much closer than either the oscillogram
or the Fourier spectrum. But as a result of this doubling of
variables we have the strange feature that, although we can
carry out the analysis with any degree of accuracy in the time
direction or in the frequency direction, we cannot carry it out
simultaneously in both beyond a certain limit. This strange
character is probably the reason why the familiar subjective
pattern of our aural sensations and their mathematical inter-
pretation have hitherto differed so widely. In fact the mathe-
matical apparatus adequate for treating this diagram in a
quantitative way has become available only fairly recently to
physicists, thanks to the development of quantum theory.

The linkage between the uncertainties in the definitions of
‘“‘time”" and ‘‘frequency’’ has never passed entirely unnoticed by
physicists. It is the key to the problem of the ‘‘coherence
length” of wave-trains, which was thoroughly discussed by
Sommerfeld in 1914.+ But these problems came into the focus
of physical interest only with the discovery of wave mechanics,
and especially by the formulation of Heisenberg’s principle of
indeterminacy in 1927. This discovery led to a great simplifica-
tion in the mathematical apparatus of quantum theory, which
was recast in a form of which use will be made in the present
paper.

The essence of this method—due to a considerable part to
W. Pauli{—is a re-definition of all observable physical quantities
in such a form that the physical uncertainty relations which
obtain between them appear as direct consequences of a mathe-

matical identity
AAf~1 (1.2

At and Af are here the uncertainties inherent in the definitions
of the epoch ¢ and the frequency f of an oscillation. The
identity (1.2) states that ¢ and f cannot be simultaneously defined
in an exact way, but only with a latitude of the order one in
the product of uncertainties.

Though this interpretation of Heisenberg’s principle is now

* Note added Tth February, 1946. An instrument called the *‘Sound Spectrograph’
has been developed by the Bell Telephone Laboratories for the recording of sound
atterns in two-dimensional form. The first publications have just appeared;
R, R. K.: “Visible Patterns of Sound,” Science, 9th November, 1345, and
“‘Visible Speech,” Bell Laboratories Record, January 1946.
1 SOMMERFELD, A.: Annalen der Physik, 1914, 44, p. 177.
. Another field of classical physics in_which an uncertainty relation is of great
importance is Brownian motion. Cf. FiUrTH, R.: “On Some Relations between
Classical Statistics and Qummm Mechanics,” Zeitschrift fiir Physik, 1933, 81, p. 143,
and BouLIGAND, G.: ‘“Relations d’lncertitude en Géometrie et en Physique”
(Hermann et Ciex Parls, 1934). .

. PAuLL, W.: ‘Handbuch der Physik,” vol. 24/1, 2nd ed. (Berlin, 1933). A very
lucid exposition of quantum mechanics on these lines is given by ToLMAN, R. C.:
“The Principles of Statistical Mechanics” (Oxford, 1938), pp. 189-276. In Dirac’s
lguem Pauli’s postulates appear as results, derived from another set of postulates.

f. DIRAC, P. A. M.: “Quantum Mechanics,” 2nd ed. (Oxford, 1938), p. 1&'?_
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widely known, especially thanks to popular expositions of
quantum theory,* it appears that the identity (1.2) itself has
received less attention than it deserves. Following a suggestion
by the theoretical physicist A. Landé, in 1931 G. W. Stewart
brought the relation to the notice of acousticians, in a short
notet—to which we shall return in Part 2—but apparently
without much response. In communication theory the intimate
connection of the identity (1.2) with the fundamental principle of
transmission appears to have passed unnoticed.

Perhaps it is not unnecessary to point out that it is not intended
to explain the transmission of information by means of quantum
theory. This could hardly be called an explanation. The fore-
going references are merely an acknowledgment to the theory
which has supplied us with an important part of the mathe-
matical methods.

(3) THE COMPLEX SIGNAL

In order to apply the simple and elegant formalism of quantum
mechanics, it will be convenient first to express the signal
amplitude s(¢) in a somewhat different form.

It has long been recognized that operations with the complex
exponential e/o—often called cis wt—have distinct advantages
over operations with sine or cosine functions. There are two
ways of introducing the complex exponential. One is to write

.

cos wt = $(e/o! + e—Jor) sin wWP= :—217 (efot — e=tory | (1.3)

This means that the harmonic functions are replaced by the
resultant of two complex vectors, rotating in opposite directions.
The other way is to put

cos wt = F(e/ot) sin wt = — R(jelor)

(1.4)

In this method the harmonic functions are replaced by the real
part of a single rotating vector. Both methods have great
advantages against operation with real harmonic functions.
Their relative merits depend on the problem to which they are
applied. In modulation problems, for instance, the advantage
is with the first method. On the other hand, the formalism of
quantum mechanics favours the second method, which we are
now going to follow. This means that we replace a real signal
of the form

s(t) = acos wt + bsin wt . (1.5)
by a complex time function
() = () + jo(t) = (a — jb)elot (1.6)

which is formed by adding to the real signal s(f) an imaginary
signal jo(¢). The function o(¢) is formed from s(¢) by replacing
cos wt by sin wt and sin wt by — cos wt. The function o(f) has
a simple significance. It represents the signal in quadrature to
s(¢) which, added to it, transforms the oscillating into a rotating
vector. If, for instance, s(¢) is applied to two opposite poles of
a four-pole armature, o(f) has to be applied to the other pair in
order to produce a rotating field.

If s(¢) is not a simple harmonic function, the process by which
Y() has been obtained can be readily generalized. We have
only to express s(f) in the form of.a real Fourier integral, replace
every cosine in it by e/, and every sine by — je/®t. This
process becomes very simple if, instead of sine and cosine
Fourier integrals, the complex (cisoidal) Fourier integrals are

* SCHRODINGER, E.: “Science and the Human Temperament (Allen and Unwin,
1935), pp. 126-129. LINDEMANN, F. A.: “The Physical Significance of Quantum
Theory” (Oxford, 1932), pp. 126-127. DARwWIN, C. G.: “The New Conceptions of
Matter” (G. Bell and Sons, 1931), Jpp. 78-102.

t STEWART, G. W.: Ref. No. 1.9, . .

A. Landé has made use gi,' g‘coustice.l e;sa‘x:nxlles o il.lu{trate the uncertainty relation

er V¥

in his “Vorl 1 iib eringsges (Leipzig, 1930),

pp. 17-20.
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used according to equation (1.1). In this case the passage from
s(f) to J(r) is equivalent to the instruction: Suppress the ampli-
tudes belonging to negative frequencies, and multiply the amplitudes
of positive frequencies by two. This can be readily understood
by comparing equations (1.3) and (1.4).

Though the Fourier transform of (7) is thus immediately
obtained from the Fourier transform of s(#), to obtain (¢) itself
requires an integration. It can be easily verified that the signal
a(r) associated with s(¢) is given by the integral

o) = ;—TF(‘T)Td—-L a.n

This is an improper integral, and is to be understood as an
abbreviation of the following limit

00 g [0
Fomel]7]]
—00 —o Ytte-

which is called “Cauchy’s principal value’” of an improper
integral.* To verify equation (1.7) it is sufficient to show that

it converts cos wt into sin wt and sin wt into — cos wt. Con-
versely s(¢) can be expressed by a(?) as follows:—
1(® _dr
= — 1.8
s = — ot — (1.8
—o0

Associated functions s(f) and o(f) which satisfy the reciprocal
relations (1.7) and (1.8) are known as a pair of “Hilbert trans-
Sorms.”t

Pairs of signals in quadrature with one another can be generated
by taking an analytical function f(z) of the complex variable
Z = x + jy, which can be expressed in the form f(z) = u(x,y)
+- ju(x,y). Provided that there are no poles at one side of the
x-axis (and if certain other singularities are excluded), u(x,0)
and v(x,0) will be in quadrature. The function /2 is an example
which gives u(x,0) = cos x and »(x,0) = sin x. It follows that,
as the real axis is in no way distinguished in the theory of
analytical functions of a complex variable, we can draw any
straight line in the complex plane which leaves all the poles at
one side, and the values of the two conjugate functions along
this line will give a pair of functions in quadrature.

An example of two functions in quadrature is shown in
Fig. 1.5. In spite of their very different forms they contain the

c(r)-'_(‘L‘n)—

=
\/{

Fig. 1.5.—Example of signals in quadrature.

same spectral components. If these functions were to represent
amplitudes of sound waves, the ear could not distinguish one
from the other.}

A mechanical device for generating the associated signal o(¢)
to a given signal s(7) is described in Appendix 9.2, which contains
also a discussion of the problem of single-sideband generation.

‘7 SWHITI’AKER, E.T.,and WATsON, G. N.: “Modern Analysis,” 4th ed. (Cambridge),

p. 5.

t Cf. TircumarsH, E. C.: “Introduction to the Theory of Fourier Integrals”
(Oxford, 1937). , .

t Provided that Ohm's law of hearing holds with sufficient accuracy. Such
associated signals could be used for testing the limits of validity of Ohm’s law.
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(4) EXACT FORMULATION OF THE UNCERTAINTY
RELATION

By means of the complex signal (?) it is now easy to frame
the uncertainty relation in a quantitative manner, using the
formalism of quantum mechanics. In order to emphasize the
analogy, the same symbol ¢ has been chosen for the complex
signal as is used in that theory for the ‘“‘wave’’ or “probability”’
amplitudes.

Y(?) is the time description of the signal. We can associate
with this its frequency description by means of its Fourier
transform ¢(f), which will also be called the *‘spectrum’® of (o).
The two descriptions are connected by the reciprocal Fourier
relations

9o = j B(ersindf 1.9
) = JZ(t)e—z"If‘dt . (1.10)

In order to emphasize the symmetry, the first integral has been
also written with limits — oo and oo, although we have specified
(0 in such a way that &(f) = 0 for negative frequencies; hence:
we could have taken zero as the lower limit. As in the following:
all integrals will be taken in the limits — oo to oo, the limits
will not be indicated in the formulae. :

In Section 1 several methods have been discussed for specifying
a signal by an infinite set of denumerable (countable) data. One
of these was specification by moments, M, M, This
method, with some modifications, will be the best suited for
quantitative discussion. The first modification is that it will be
more convenient to introduce instead of s(f) the following
“weight function™:—

YOO = [sOF + [0 (1.11)

The asterisk denotes the conjugate complex value. The new
weight function is therefore the square of the absolute value
of 4. This can be considered as the “‘power” of the signal, and
will be referred to by this name in what follows. A second
convenient modification is that, instead of with the moments
themselves, we shall operate with their values divided by M,,
i.e. with the following quotients:—

_Jprepdr o, [prgde L [t

J*ipt (A7 Jtide = "
These are the mean values of the ‘“‘epoch' ¢ of the signal of
orders 1,2 . . . n . .. The factor ” has been placed between
the two amplitude factors to emphasize the symmetry of the
formulas with later ones. By a theorem of Stieltjes, if all mean
values are known, the weight function j* = |i}|? is also deter-
mined, apart from a constant factor. The signal i itself is
determined only as regards absolute value; its phase remains
arbitrary. This makes the method particularly suitable, for
instance, for acoustical problems. In others, where the phase
is observable, it will not be difficult to supplement the specifica-
tion, as will be shown later.

Similarly we define mean frequencies f* of the signal as
follows:—

P N

iggar =g T e

It now becomes evident why we had to introduce a complex

signal in the previous Section. If we had operated with the real

signal s(f) instead, the weight function would have been even,

and the mean frequency f always zero. This is one of the
27

i (1.12)

(1.13)
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points on which physical feeling and the usual Fourier methods
are not in perfect agreement, But we could eliminate the
qegat;ve frequencies, only at the price of introducing a complex
signal.

As by equations (1.9) and (1.10), y and ¢ mutually determine
one another, it must be possible to express the mean frequencies
py i, and, conversely, the mean epochs by ¢. This can be done
indeed very simply by means of the following elegant reciprocal

relations:—
Jrar = [grddf . (1.14)
Jp*frdf = (i%)nj¢'571¢d‘ (1.15)
J*impas = (;—wl.)nf&‘i;,;ﬁdf ) (1.16)

The first of these, (1.14), is well known as the “Fourier energy
theorem” (Rayleigh, 1889). The other relations can be derived
from the identityt

Fny ()t = [y(Ndo(— f)df . (1.17)
by partial integration, assuming that i, ¢ and all their deriva-

tives vanish at infinity.

These very useful reciprocal relations can be summed up in
the following simple instructions. When it is desired to express
one of the mean values (1.12) by integrals over frequency,

1 d
27j df.
This can be called “‘translation from time language into fre-
quency language.”” Conversely, when doing the inverse trans-
lation, replace ¢ by ¢ and the frequency f by the operator

1
2nj dr’
quantum mechanics: Replace in classical equations the momen-

replace 4 by ¢, and the quantity t by the operator —

This corresponds to the somewhat mysterious rule of

_—b-, where x is the co-ordinate
27 dx
conjugate to the momentum p,. Actually it is no more mysterious
than Heaviside’s instruction: “Replace the operator d/d: by p,”
which has long been familiar to electrical engineers.

Applying the rule

tum p, by the operator

i
g LA

2nj [t
to a simple cisoidal function ¢ = cis 27fyt, we obtain the
value f; for the mean frequency f; and similarly f# = f5. The
mean epochs 4, on the other hand, are zero for odd powers, and
infinite for even powers n > 1. The cisoidal function is to be
considered as a limiting case, as the theory is correctly applicable
only to signals of finite duration, and with frequency spectra
which do not extend to infinity, a condition which is fulfilled

by all real, physical signals.

These definitions and rules enable us to formulate the un-
certainty relation quantitatively. Let us consider a finite signal,
such as is shown, for example, in Fig. 1.6. Let us first fix the
mean epoch and the mean frequency of the signal, by means
of equations (1.12) and (1.13) or (1.18). These, however, do
not count as data, as in a continuous transmission there will
be some signal strength at any instant, and at any frequency.
We consider 7 and f as references, not as data. The first two
data will be therefore determined by the mean-square values of
epoch and frequency, i.e.

2 J* 2t
L

t Cf. CampBELL and FOSTER: Reference 1.7, p. 39.

(1.18)

(1.19)
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T dj* df
= [d*ddf T @2 [t = G g
e . (120

The second of these has been first translated into *“time lan-
guage,”’ as explained, and transformed by partial integration to
put its essentially positive character into evidence.

It may be noted that 72 and f2, and in general all mean values
of even order, remain unaltered if the real signal s(¢) or its
associate, o(¢), is substituted in the place of $(r) = s(f) + jo(r).
Hence in the following we could again use the real instead of
the complex signal, but ¢: will be retained in order to simplify
some of the analytical expressions and to emphasize the similarity
with the formulas of quantum mechanics.

We now define what will be called “the effective duration’’ At
and the “effective frequency width’> Af of a signal by the
following equations

At=[2nG—2}F . . . . (12D)

Af = [2a(f= 721 1.22)

In words, the effective duration is defined as +/(27) times the
r.m.s. deviation of the signal from the mean epoch ¢, and the
effective frequency width similarly as +4/(27) times the r.m.s.
deviation from f. The choice of the numerical factor +/(2m)
will be justified later.

Using the identities

f

T=R=E-0 G=R=f2-7
At and Af can be expressed by means of (1.19) and (1.20).
The expressions are greatly simplified if the origin of the time
scale is shifted to 7, and the origin of the frequency scale to f.
Both transformations are effected by introducing a new time
scale

T=1—1.

(1.23)
and a new signal amplitude
W(r) = f(r)e=2mif~ (1.24)

Expressing ¢ and ¢ by the new quantities 7 and 'V, it is found
that, apart from a numerical factor 27, (Af)2 and (A f)? assume
the same form as equations (1.19) and (1.20) for #2 and f2.
Multiplying the two equations we obtain

¢ P [2E 4T,

But, by a mathematical identity, a form of the ‘“Schwarz
inequality’’ due to Weyl and Pauli,{ the expression in brackets
is always larger than unity for any function ¥ for which the
integrals exist. We obtain, therefore, the uncertainty relation

in the rigorous form
AAf >4 (1.26)

This is the mathematical identity which is at the root of the
fundamental principle of communication. We see that the
r.m.s. duration of a signal, and its r.m.s. frequency-width define
a minimum area in the information diagram. How large we
assume this minimum area depends on the convention for the
numerical factor. By choosing it as 4/(27) = 2:506 we have
made the number of elementary areas in any large rectangular

+ WEyL, H.: “The Theory of Groups and Quantum Mechanics"” (Methuen, London
1%3}1); pp. 77 and 393. Cf. also ToLMAN, R. C.: loc. cit., p. 235, and Appendix 9.3
of this paper.



GABOR: THEORY OF COMMUNICATION

region of the information diagram equal to the number of
independent data which that region can transmit, accordmg to
the result obtained in Section 1.

Relation (1.26) is symmetrical in time and frequency, and it
suggests that a new representation of signals might be found in
which ¢ and f played interchangeable parts. Moreover, it
suggests that it might be possible to give a more concrete inter-
pretation to the information diagram by dividing it up into
“cells” of size one half, and associating each cell with an
‘‘elementary signal’’ which transmitted exactly one datum of
information. This programme will be carried out in the next
Section.

(5) THE ELEMENTARY SIGNAL

The mathematical developments up to this point have run
rather closely on the lines of quantum mechanics. In fact our
results could have been formally obtained by replacing a co-
ordinate x by ¢, the momentum p by f, and Planck’s constant A
by unity. But now the ways part, as questions arise in the
theory of information which are rather different from those
which quantum theory sets out to answer.

The first problem arises directly from the inequality (1.26).
What is the shape of the signal for which the product ArAf
actually assumes the smallest possible value, i.e. for which the
inequality turns into an equality?

The derivation of this signal form is contained in Appendlx 9.3;
only the result will be given here, which is very simple. The
signal which occupies the minimum area AtAf = % is the modu-
lation product of a harmonic oscillation of any frequency with a
pulse of the form of a probability function. In complex form

(1) = e—a*C—1a) cis Qu ft + ) (1.27)
o, by, fo and ¢ are constants, which can be interpreted as the
‘“‘sharpness’’

quency and phase constant of the modulating oscillation.
constant o is connected with Az and Af by the relations

m\ 1 1
Ar = \/ (E)& Af = Jan®
As might be expected from the symmetrical form of the con-

dition from which it has been derived, the spectrum is of the
same analytical form

30 = e~ @ A s [ dmiyf —f) + 4] . (128)
The envelopes of both the signal and its spectrum, or their
absolute values, have the shape of probability curves, as illus-
trated in Fig. 1.6. Their sharpnesses are reciprocal.

Because of its self-reciprocal character, the probability signal
has always played an important part in the theory of Fourier
transforms. In three recent papers, Roberts and Simmonds have
called attention to some of its analytical advantages.l-11,1.12, 1.13
But its minimum property does not appear to have been recog-
nized. It is this property which makes the modulated proba-
bility pulse the natural basis on which to build up an analysis
of signals in which both time and frequency are recognized as
references.

It may be proposed, therefore, to call a pulse according to
equation (1.27) an elementary signal. In the information
diagram it may be represented by a rectangle with sides At
and Af, and area one-half, centring on the point (z,,fy). It
will be shown below that any signal can be expanded into
elementary signals in such a way that their representative rect-
angles cover the whole time-frequency area, as indicated in
Fig. 1.7. Their amplitudes can be indicated by a number
written into the rectangle, or by shading. Each of these areas,
with its associated datum, represents, as it were, one elementary

The

of the pulse, the epoch of its peak, and the fre- .

435

g

-

—f

i

Fig. 1.6.—Envelope of the elementary signal.
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Fig. 1.7.—Representation of signal by logons.

quantum of information, and it is proposed to call it a logon.
Expansion into elementary signals is a process of which Fourier
analysis and time description are special cases. The first is
obtained at « = 0, in which case the elementary signal becomes
a sine wave of infinite length; the second at o — co, when it
passes into a ‘‘delta function.”

It will be convenient to explain the expansion into elementary
signals in two steps. The first step leads to elementary areas
of size unity, with two associated data, but it is simpler and
more symmetrical than the second step, which takes us to the
limit of sub-division.

This first step corresponds to division of the information area
by a network of lines with distances At and 1/Ar respectively,
as illustrated in Fig. 1.8.* The elementary areas have suffixes n

n+l le,k—l' Cnﬂ,k Cnrl,kol
f n Co k-l | ook o kst "’
n-l pt ‘E»-r,u Ca-1k | Ca-1,h01
k-1 k k+l
—k
-~f
Fig. 1.8.—Representation of signal by a matrix of complex

amplitudes.

* For perfect symmetry the spacings in the network ought to have been taken as
(v2)At and l/(\/Z)At = (v/2)Af respectively.
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in the time direction, and k in the frequency direction. The
centre lines (horizontally) may be at ¢, = n At, assuming for
convenience that we measure time from the ‘‘zero’-th of these

lines. The expansion is given by the following formula
RN . (t — nA9? .
W) = Z,. Zk CuXp — M cis QmkifA)  (129)

—00 -—o0

The matrix of the complex coefficients ¢, represents the signal
in a symmetrical way, as it is easy to see that if the expansion
exists we arrive—apart from a constant factor—at the same
coefficients if we expand ¢(f) instead of J(2).

As the elementary signals in (1.29) are not orthogonal, the
coefficients c,, are best obtained by successive approximations.
In the first approximation we consider each horizontal strip
with suffix # by itself, and expand the function y(f) as if the
other strips did not exist, in the interval (r, — 3Af) to (r, + 1A0),
by putting ’

Y(f) exp W(LZ—T;%)_Z = Zk Cp Cis Qmkt|AD)

In this formula the exponential function, which is independent

.of k, has been brought over to the left. We have now a
known function on the left, and a Fourier series on the right,
which by known methods gives immediately the first approxima-
tion for the coefficients c,,. This represents P(r) correctly in
the intervals for which the series are valid, but not outside them.
If the first approximations are added up with summation
indices n, there will be a certain error due to their overlap.
A second approximation can be obtained by subtracting this
error from y(#) in eqn. (1.29) and repeating the procedure. Tt
can be expected to converge rapidly, as the exponential factor
decays so fast that only neighbouring strips n influence each
other perceptibly.

This expansion gives ultimately one complex number c,, for
every two elementary areas of size one-half. The real and
imaginary parts can be interpreted as giving the amplitudes of
the following two real elementary signals

1)
‘:zg H= exp — o(t — fp2? :lons 2nfyt — 1)

(1.30)
where o2 = 37/(AH)2. These can be called the “‘cosine-type”
and ‘‘sine-type’ elementary signals. They are illustrated in
Fig. 1.9. We can use them to obtain a real expansion, allocating

Sine type

Fig. 1.9.—Real parts of elementary signal.

one datum to every cell of one-half area. But it may be noted
that this will have to be necessarily a more special and less sym-
metrical expansion than the previous one, as the transform of a
cosine-type elementary signal, for example, will not in general be
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of the same type. As always in communication theory, a
description by complex numbers is formally simpler than by
real data.

We now divide up the information plane as shown in Fig. 1.10

—agp | bso | a5 | by | as | bse

tt—*aw b | e | ba | s | b

—aw | b | an | ba | 82 | bw

o0 by | 2 | ba | a2 | ba
At

+3lo bo | an by e by
At +——
4 | ..
oAt A

s

Fig. 1.10.—Expansion of arbitrary signal in cosine-type and sine-type
elementary signals.

into cells of size one-half, measuring Ar in the time, and 3Ar¢
in the frequency, direction. Starting from the line of zero
frequency, we allocate to these areas in every strip alternately a
cosine-type and a sine-type elementary signal. Evidently we
must start with a cosine signal at = 0, as the sine-type signal
would be zero. This leads us to the following expansion of the
real signal s(¢):—

00 _ 2 0

()= z:: exp — 179—2(:% Zk [a, cos 2mk(t — nADAt

- + by sin 2nk + D — nADIA] . (131)

In order to find the coefficients a,, and b, we can carry out
the same process of approximation as explained in connection
with expansion (1.30), but with a difference. At the first step
we arrive at an equation of a form

-]

fi0) = Zk Gy, €08 kx + by sin (k + )x
0

-with the abbreviations x = 27(t — nAn/At, and f(x) = s(t)

exp 3m(t — nAf?[(Ar)2. But the trigonometric series on the
right is not a Fourier series. It is of a somewhat unusual type,
in which the sine terms have frequencies mid-way between the
cosine terms. It will be necessary to show briefly that this series
can be used also for the representation of arbitrary functions.
First we separate the even and odd parts on both sides of the
equation, by putting

0

30+ f(— 0] = Zk a, cos kx

oo

- f(—0]= Zk b,y sin (k + $)x

The first is a Fourier series, but not the second. We have seen,
however, in Section 3, how all the frequencies contained in a
function can be raised by a constant amount by means of a
process which involves calculating the function in quadrature
with it. Applying this operation to both sides of the last
equation we can add 4 to k + 4, and obtain the ordinary Fourier
sine series, which enables the coefficients to be calculated.

The expansion into logons is, in general, a rather inconvenient



GABOR: THEORY OF COMMUNICATION

process, as the elementary signals are not orthogonal. If only
approximate results are required, it may be permitted to neglect
the effect of their interference. This becomes plausible if we
consider that an elementary signal has 76-8% of its energy
inside the band Ar or Af, and only 11:6% on either side.
Approximately correct physical analysis could be carried out by
means of a bank of resonators with resonance curves of proba-
bility shape. It can be shown that if the energy collected by a
resonator tuned to f is taken as 1009, the resonators on the
right and left of it, tuned to f+ Af and f— Af, would collect
only 0-65% each. Roberts and Simmonds!11 1.12, 1.13 have
given consideration to the problem of realizing circuits with
responses of probability shape.

Though the overlapping of the elementary signals may be of
small practical consequence, it raises a question of considerable
theoretical interest. The principle of causality requires that any
quantity at an epoch ¢ can depend only on data belonging to
cpochs earlier than 7. But we have seen that we could not
carry out the expansion into elementary signals exactly without
taking into consideration also the “overlap of the future.”” In
fact, strict causality exists only in the ‘“‘time language’’; as soon
as we use frequency as an additional reference the sort of un-
certainty occurs which in modern physics has often been called
the “breakdown of causality.”” But rigorous time-analysis is
possible only with ideal oscillographs, not with any real physical
instrument; hence strict causality never applies in practice. A
limitation of this concept ought not to cause difficulties to
electrical engineers who are used to the Fourier integral, i.e. to an
entirely non-causal method of description.

(6) SIGNALS TRANSMITTED IN MINIMUM TIME
The elementary signals which have been discussed in the last
Section assure the best utilization of the information area in the
sense that they possess the smallest product of effective duration
by effective frequency width. It follows that, if we prescribe
the effective width Af of a frequency channel, the signal trans-
mitted through it in minimum time will have an envelope

W) = exp — Qm)AS)t — ©)2 (1.32)
and, apart from a cisoidal factor, a Fourier transform
B m(f — f\?
O(f) == exp — E(Tf—) 1.33)

But the problem which most frequently arises in practice is
somewhat different. Not the effective spectral width is pre-
scribed, but the total width; i.e. a frequency band (f, — f}) is
given, outside which the spectral amplitude must be zero. What
is the signal shape which can be transmitted through this channel
in the shortest effective time, and what is its effective duration?

Mathematically the problem can be reduced to finding the
spectrum ¢(f) of a signal which makes

1
= @ (1.34)

d b* dd .

[
a minimum, with the condmon that ¢(f) is zero outside the
range f; — f,. But this is equivalent to the condition that
(N vamshes at the limits f; and f,. Otherwise, if (/) had a
finite value at the limits but vanished outside, the discontinuity
at the limits would make the numerator of equation (1.34)
divergent. (This is the converse of the well-known fact that a
signal with an abrupt break contains frequencies up to infinity,

which decay only hyperbolically, not fast enough to make f2
finite.)
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The problem is one of the calculus of variations, and is solved
in Appendix 9.4, where it is shown that the signals transmitted
in minimum time must be among the solutions of a differential
equation
d2¢
a5 +Ad=0
where A is an undetermined constant. But the possxble values
of A are defined by the auxiliary condition that ¢(f) must vanish
at the limits of the waveband.* Hence all admissible solutions
are of the form

(1.35)

.. f—=A
sin k7

fa— Ny

where k is an integer. We can call this the kth characteristic

function of transmission through an ideal band-pass filter. Its
effective duration is

() = (1.36)

m\ k .
At = \/(2_ =7 (1.37)
and its effective frequency width
1
A = =(F- ) (1.38)

TheYshortest duration At belongs to k = 1, i.e. to the funda-
mental characteristic function, which is illustrated in Fig. 1.11,
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Fig. 1.11.—Spectrum of signal which can be transmitted in minimum
time through an ideal band-pass filter, and the signal itself.

The product AtAf is also smallest for k = 1; its value is 0- 571,
Though this is not much more than the absolute minimum, 0-5,
the transmission channel is poorly utilized, as the effective
frequency width is only 0-456 of (f, — f}). Practice has found
a way to overcome this difficulty by means of asymmetric,
vestigial or single-sideband transmission. In these methods the
spectrum is cut off at or near the centre more or less abruptly.
This produces a ‘“‘splash,’’ a spreading out of the signal in time,
but this effect is compensated in the reception, when the other
sideband is reconstituted and added to the received signal.

The advantages of a signal of sine shape, as shown in Fig. 1.11,
have already been noticed, as it were, empirically by Wheeler
and Loughrent in their thorough study of television images. As
in television the signals transmitted represent light intensities,
i.e. energies, our definitions must be applied here with a modi-
fication. Either the square root of the light intensity must be
substituted for i, or the square root of the Fourier transform

* Problems of this kind are known in mathematics and theoretical physics as
Sturm-Liouville “proper value’ \lalroblems Cf. Courant, R., and HiLperT, D.:
"Mcthodcn der mathematischen Physik,”” Vol. 1 (Springer, Berlm 1931), or “Inter~
science” (New York, 1943), p. 249, or any textbook on wave mechanics.

t+ Ref. No. 14. In comparin, the abovc results with theirs it may be borne in
mind that their “nominal cut-off frequency”’ is one-half of a sideband, and one-quarter
of the total channel width.
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of the signal for ¢. The practical difference between these two
possible definitions becomes very small in minimum problems.
If we adopt the second, we obtain the same ‘‘cosine-squared’’
law for the optimum spectral distribution of energy which
Wheeler and Loughren have considered as the “most attractive
compromise.”’

Fig. 1.11 shows also the signal s(#) which is transmitted in

minimum time by a band-pass filter. It can be seen that it
differs in shape very little indeed from its spectrum. It may be
noted that the total time interval in which the signal is appre-
ciably different from zero is 2/(f, — f}).

It can be seen from Fig. 1.11, that the optimum signal utilizes
the edges of the waveband—in single-sideband television, the
upper edge—rather poorly. But this is made even worse in
television by the convention of making the electromagnetic
amplitudes proportional to the light intensities, so that the
electromagnetic energy spectrum in the optimum case has the
shape of a cost curve. This means that the higher frequencies
will be easily drowned by atmospherics. Conditions can be
improved by ‘‘compression-expansion’’ methods, in which, for
example, the square root of the light intensity is transmitted,
and squared in the receiver.

(7) DISCUSSION OF COMMUNICATION PROBLEMS BY
MEANS OF THE INFORMATION DIAGRAM
As the foregoing explanations might appear somewhat
abstract, it appears appropriate to return to the information
diagram and to demonstrate its usefulness by means of a few
examples.
Let us take frequency modulation as a first example. Fig. 1.12
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Fig. 1.12.—Three representations of frequency modulation.

contains three different illustrations of the same slowly modulated
carrier: the time representation, the spectrum and its picture in
the information diagram. It can be seen that the third illus-
tration corresponds very closely to our familiar idea of a variable
frequency. The only departure from the naive expectation that
its pictorial representation would be an undulating curve is that
the curve has to be thick and blurred. But it appears preferable
not to show the blurring, not only because it is difficult to draw,
but also because it might give rise to the idea that the picture
could be replaced by a definite density distribution. Instead
we have representéd it by logons of area one-half. The shape
of the rectangles, i.e. the ratio At/Af, is entirely arbitrary and
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depends on the conventions of the analysis. If At is taken
equal to the damping time of, say, a bank of reeds, the picture
gives an approximate description of the response of the instru-
ment. It gives also a rough picture of our aural impression of
a siren. How this rough picture can be perfected will be shown

in Part 2.

A second example is time-division multiplex telephony, a
problem which almost forces on us the simultaneous considera-
tion of time and frequency. Bennett!-!5 has discussed it very
thoroughly by an irreproachable method, but, as is often the
case with results obtained by Fourier analysis, the physical
origin of the results remains somewhat obscure. An attempt
will now be made to give them a simple interpretation.

In time-division multiplex telephony, synchronized switches at
both ends of a line connect the line in cyclic alternation to a
number N of channels. Let f, be the switching frequency,
ie. the number of contacts made per second. What is the
optimum switching frequency if N conversations, each occupying
a frequency band w are to be transmitted without loss of informa-
tion and without crosstalk—i.e. mutual interference between
channels—and what is the total frequency-band requirement W?

The information diagram is shown in Fig. 1.13. The fre-
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Fig. 1.13.—Information diagram of time-division multiplex-telephony
system.

quency band W is sub-divided in the time direction into rectangles
of a duration 1/f,, ie. f; rectangles per sec. If these are to
transmit independent data they cannot transmit less than one
datum at a time. But one datum, or logon, at a time is also
the optimum, as otherwise the receivers would have to dis-
criminate between two or more data in the short time of contact,
and distribute them somehow over the long waiting time between
two contacts. Hence, if no information is to be lost, the number
of contacts per second must be equal to the data of N con-
versations each of width w, i.e. fy = 2Nw. This is also Bennett’s
result.

We now consider the condition of crosstalk. This is the exact
counterpart of the problem of minimum transmission time in a
fixed-frequency channel, considered in the last Section, except
that time and frequency are interchanged. Thus we can say at
once that the optimum signal form will be the sine shape of
Fig. 1.11, and the frequency requirement will be very nearly 2f;.
The characteristic rectangle AtAf of this signal is shown in
every switching period, with the dimensions as obtained in the
last Section. The total frequency band requirement becomes
W = 2f, = 4Nw. This can be at once halved by single-sideband
transmission, i.e. transmitting only one-half of W. But even
this does not represent the limit of economy, as the signal is
symmetrical not only in frequency, but also in time. In the
case of the example treated in the previous Section this was of
no use, as the epoch of the signal was unknown. But in time-
division multiplex the epoch of each signal is accurately known;
hence it must be possible to halve the waveband once more and
reduce W to the minimum requirement W = Nw. An ingenious,
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though rather complicated, method of achieving this, by means
of special filters associated with the receiving channels, has been
described by Bennett,1-15
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(9) APPENDICES
(9.1) Analysis in Terms of Other than Simple Periodic Functions

The discussion in Section 1 suggests a question: Why are we
doing our analysis in terms of sine waves, and why do we limit
our communication channels by fixéd frequencies? Why not
choose other orthogonal functions? In fact we could have taken,
for example, the orthogonalized Bessel functions

VOt

as the basis of expansion. J, is a Bessel function of fixed but
arbitrary order n; r, is the kth root of J,(x)=0; k is the expan-
sion index. These functions are orthogonal in the interval
0 < t < 7. The factors r, /7 have the dimension of a frequency.
We could now think of limiting the transmission channel by
two “‘Bessel frequencies,”” say u; and u,. Here the first differ-
ence arises. The number of spectral lines between these limits
will be the number of the roots of J,(x) = 0 between the limits
7 and p,7.  But this number is not proportional to .
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Hence a Bessel channel, or a channel based on any function
other than simple harmonic functions, would not transmit the
same amount of information in equal time intervals.

In principle it would be possible to construct circuits which
transmitted without distortion any member of a selected set of
orthogonal functions. But only harmonic functions satisfy
linear differential equations in which time does not figure
explicitly; hence these are the only ones which can be trans-
mitted by circuits built up of constant elements. Every other
system requires variable circuit components, and as there will
be a distinguished epoch of time it will also require some sort
of synchronization between transmitter and receiver. In com-
petition with fixed-waveband systems any such method will have
the disadvantage that wider wavebands will be required to avoid
interference with other transmissions. Though this disadvantage
—as in the case of frequency modulation—might be outweighed
by other advantages, investigation of such systems is outside the
scope of the present study, which is mainly devoted to the
problem of waveband economy.

(9.2) Mechanical Generation of Associated Signals, and the
Problem of Direct Production of Single Sidebands

In order to gain a more vivid picture of signals in quadrature
than the mathematical explanations of Section 3 can convey, it
may be useful to discuss a method of generating them mechan-
ically. It is obvious from equations (1.7) and (1.8) that, in order
to generate the signal o(f) associated with a given signal s(¢), it
is necessary fo know not only the past but also the future. Though
formally the whole future is involved, the ‘“‘relevant future’’ in
transmission problems is usually only a fraction of a second.
This means that we can produce o(f) with sufficient accuracy if
we convert, say, 0-1sec of the future into the past; in other
words, if we delay the transmission of s(r) by about this interval,
Fig. 1.14 showssa device which might accomplish this.

s(t-r)

Photacell

Fig. 1.14.—Device for mechanical generation of a signal in quadrature
. with a given signal.

The light of a lamp, the intensity of which is modulated by
the signal s(?), is thrown through a slit on a transparent rotating
drum, coated with phosphorescent powder. The drum therefore
carries a record of the signal with it, which decays slowly. After
turning through a certain angle the record passes a slit, and here
the light is picked up by a photocell, which transmits s(#) with
a delay corresponding to the angle.* On the inside of the drum
two hyperbolically-shaped apertures are arranged at both sides
of the slit opposite to the first photocell. The light from the
two hyperbolic windows is collected by two photocells, which
are connected in opposition. By comparing this arrangement

* A somewhat similar device (for another purpose) has been described by Goldmark
and Hendricks (Ref. No. 1.10).
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with equation (1.7) it is easy to see that the difference of the two
photocell currents will be proportional to the function in quadra-
ture with s(¢).

The complex signal has been discussed at some length as it
helps one to understand certain problems of communication
engineering. One of these is the problem of single-sideband
transmission. It is well known that it is not possible to produce
a single sideband directly. The method employed is to produce
both sidebands and to suppress one. Equation (1.7) explains
the reason. Direct single-sideband production involves knowledge
of the future. The conventional modulation methods always
add and subtract frequencies simultaneously. With mechanisms
like the one shown in Fig. 1.14 it becomes possible to add or
subtract them. This means forming the following expression

R[ (1) expjw ] = 5() cos w t — o(f) sin w ¢

where w_ is the angular carrier frequency. By substituting a
harmonic oscillation for s(¢) is is easy to verify that w, has been
added to every frequency present in the signal. Direct produc-
tion of single sidebands involves, therefore, the following opera-
tions: Modulate the signal with the carrier wave, and subtract
from the product the modulation product of the signal in
quadrature with the carrier wave in quadrature. It is not, of
course, suggested that this might become a practical method;
the intention was merely to throw some light on the root of a
well-known impossibility.

(9.3) The Schwarz Inequality and Elementary Signals
The inequality

([P < 4T 2P )<J"i‘1'_ ¥, > (1.39)

is valid for any real or complex function ¥ which is continuous
and differentiable and vanishes at the integration limits. The
following is a modification of a proof given by H. Weyl.t

If a,, b, are two sets of n real or complex numbers, a theorem
due to H. A. Schwarz states that

ot ab |t <(aaf + ...+ aa)
(bby + ...+ b,b}) (1.40)

If a’s and b’s are all real numbers, this can be interpreted as
expressing the fact that the cosine of the angle of two vectors
with components @, . . . a,and b; . . . b, in an n-dimensional
Euclidian space is smaller than unity. This can be easily under-
stood, as in a Euclidian space of any number of dimensions a
two-dimensional plane can be made to pass through any two
vectors issuing from the origin; hence the angle between them
has the same significance as in plane geometry. Equation (1.40)
is a generalization of this for “‘Hermitian’’ space, in which the
components or co-ordinates of the vectors are themselves complex
numbers.

By a passage to the limit the sums in (1.40) may be replaced
by integrals, so that

|aby +

Zaby — [ f(1)g(r)dr

and similarly for the other two sums.
takes the place of the summation index.
now becomes

The real variable © now
The Schwarz inequality

|[ fe drf> < ([ ff*dr)([gg*dTr) . (1.41)
This remains valid if we replace f and g by their conjugates

|f*g*dr|2 < ([ff*dr)([gg*dr) . (1.42)

139\;’5\11., H.: “The Theory of Groups and Quantum Mechanics” (Methuen, 1931),
p. 393.
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Adding (1.41) and (1.42) we obtain

2A[ff*dr)([gg*dr) > |[fedr|* + |[f*g*dr]?
> (g + frg*)dr]?

The second part of this inequality states the fact that the sum
of the absolute squares of two conjugate complex numbers is
never less than half the square of their sums.

We now put

(1.43)

*
dr

f=7¢
Substitution in (1.43) gives

g= (1449

A([ff*dr)([gg*dT) > U(‘F——— + ‘I’*d‘y)'rdf] (1.45)

The right-hand side can be transformed by partial integration into

* d d
J (¢ e Yrar =J'-rd—_r(\lf*‘lf)df =—[¥*¥dr  (146)

where it has been assumed that ¥ vanishes at the integration
limits. Substituting this in (1.45) we obtain the inequality (1.39).

In order to obtain the elementary signals we must investigate
when this inequality changes into an equality. From the
geometrical interpretation of Schwarz’s inequality (1.40), it can
be concluded at once that the equality sign will obtain if, and
only if, the two vectors a, b have the same direction, i.e.

b, = Ca,

In Hermitian space the direction is not changed by multiplica-
tion by a complex number, hence C need not be real.

This condition can be applied also to the inequality (1.39),
but with a difference. (1.39) will become an equation only if
both the conditions (1.41) and (1.42) become equalities; i.e. if
the following two equations are fulfilled

f= Cg and f* = C'g* (1.47)

where C and C’ are real or complex constants. But these two

equations are compatible if, and only if,
= C* (1.48)

in which case the two equations (1.47) become identical. On
substituting f and g from (1.44) they give the two equivalent
equations

*
B _ CT¥ and 7?- = C*t¢*

= (1.49)

From either of these we can eliminate ¥ or its conjugate ¥'* and
are led to the second-order differential equation

(1 av

T dr

) CC*T¢ . (1.50)
Multiplying both sides by (4\¥/d7)/, this becomes integrable and
gives

2
(l ck A CC*¥2? + const. (1.51)
T dr

But the constant is zero, as at infinity both ¥ and d¥/d™ must
vanish. We thus obtain the first-order equation

a¥

i = &+ (CCHY

(1.52)
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with the solution (apart from a constant factor)
W = exp + $|C[72. (1.53)

Of the two signs we can retain only the negative one, as other-
wise the signal would not vanish at infinity. Putting $|C| = a2
we obtain the envelope of the elementary 51gnal The signal ./;
itself results from this by multiplying by cis 27f(t — #) and is
discussed in Section 5.

It will be useful to sketch briefly the difference between the
analysis based on elementary signals and the method of wave
mechanics. In the foregoing we have answered the question:
What functions ¥ make the product A fA¢ assume its smallest
possible value, i.e. one-half? The question posed by wave
mechanics is more general: What functions " makes AfAt a
minimum, while fulfilling the condition of vanishing at infinity?
This is a problem of the calculus of variations, which leads,
instead of to eqn. (1.50), to a more general equation, called the
“wave equation of the harmonic oscillator’’:

ay
@t

where A and o are real constants. This equation, which con-
tains (1.50) as a special case, has solutions which are finite every-
where and vanish at infinity only if

A=an+1)

where n is a positive integer. These ““proper”’ or *“‘characteristic’
solutions of the wave equation are (apart from a constant factor)

+ A= 2 =0

Y =e- iw'ﬂ_‘f_ e—adtd
" dr

They are known as orthogonal Hermite functions* and form
the basis of wave mechanical analysis of the problem of the
linear oscillator. They share with the probability function—
which can be considered as the Hermite function of zero order—
the property that their Fourier transforms are of identical type.
The product A fAt for the nth Hermite function is

AIAf =32n 4+ 1)

That is to say that the Hermite functions occupy in the informa-
tion diagram areas of size 4, 2, £ . . . Because of their ortho-
gonality Hermite functions readily lend themselves to the expan-
sion of arbitrary signals; hence their importance in wave
mechanics. But they are less suitable for the analysis of con-
tinuously emitted signals, as they presuppose a distinguished
epoch of time ¢ = 0, and they do not permit the sub-division of
the information area into non-overlapping elementary cells.}

* Also known as parabollcal cylinder functmns and Weber-Hermite functions
Cf. WHITTAKER and WATSON: “Modern Analysis,” pp. 231, 347. They are discussed
in all textbooks on wave mechanics. Cf. also the study by BABER, T. D. H., and
Mirsky, L.: “Note of Certain Integrals involving Hermite’s Polynomxals," Philo-
sophical Magazme (VII), 1944, 35, p. 532.

+ The derivations in this Appendnx can be considerably shortened if use is made

of the symbuhc operator method of quantum mechanics. Cf. MAX BORN: **Atomic
Physics” (Blackie, 1935), Appendix XXI, pp. 309-313.
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(9.4) Signals Transmitted in Minimum Time through a Given
Frequency Channel

It will be convenient to use “‘frequency language,”” i.e. to
express the signal by its Fourier transform ¢(f). The problem
is to make the effective duration At of a signal a minimum,
with the condition that ¢(f) = 0 outside an interval f; — f,.
Thus

A= —— ! "S.dqsf

T 2m2M, df df (159

must be a minimum, where

f3
My = Jcﬁ‘qﬁdf
N
This is equivalent to making the numerator in (1.54) a mini-
mum with the auxiliary condition M, = constant, and this in
turn can be formulated by Lagrange’s method in the form

dp* d
SJ( ot Ag*d)dr =0 (1.55)
where A is an undetermined multiplier. The variation of the
first term is
dp* dp
J a o
qu‘ d¢> do dd* do* d8¢ de ddd*
j(df ar dfsdf)f J(df T df)f

[""‘ 5¢ + d¢8¢~]’ ' J’( ;}ﬁ;‘ dfz Lo 156

But at the limits ¢ must vanish, as it is zero outside the interval
and must be continuous at the limit, as otherwise the integral
(1.54) would not converge. Hence we have here 8¢ == 8¢* = 0,
and the first term vanishes. The variation of the second term

in (1.55) is
A[($*8¢ + $db*)df
The condition (1.55) thus gives
.Ht( df? + Ad)t)&l’ + dfz + A¢)8¢‘]df 0 (1.58)

and this can be identically fulfilled for arbitrary variations 8¢
if, and only if,

(1.57)

d "S +Ad=0 (1.59)
This is the differential equation which has to be satisfied by the
signal transmitted in minimum time. Iis solution is discussed
in Section 6.



