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It is shown that every Lie algebra can be represented as a bivector algebra; hence 
every Lie group can be represented as a spin group. Thus, the computational 
power of geometric algebra is available to simplify the analysis and applications 
of Lie groups and Lie algebras. The spin version of the general linear grouti is 
thoroughly analyzed, and an invariant method for constructing real spin repre- 
sentations of other classical groups is developed. Moreover, it is demonstrated 
that every linear transformation can be represented as a monomial of vectors in 
geometric algebra. 

1. INTRODUCTION 

The fermion algebra (generated by fermion creation and annihilation operators) has been 
widely applied to group theory’ and many other mathematical problems with no essential 
relation to fermions. Yet few physicists and mathematicians realize that this mathematical 
system can be regarded as a universal geometric algebra applicable to every mathematical 
domain with geometric structure. As part of a broad program to make this claim to universality 
an accomplished fact,2-5 we show here that this geometric algebra is a viable, if not superior, 
alternative to matrix algebra for characterizing Lie groups and Lie algebras. As a by-product 
with even wider ramifications, we show that it is a powerful means for characterizing and 
manipulating linear transformations in general. We see it as consolidating various insights of 
many scientists into a coherent mathematical system. 

One of the barriers to establishing a universal geometric algebra* has been a lack of general 
agreement among mathematicians on the relative status of Grassmann algebra (GA) and 
Clifford algebra (CA). The disputants can be divided into two camps: call them the “Grass- 
mannians” and the “Cliffordians.” Grassmannians argue that GA is more fundamental than 
CA, because it makes no assumptions about a metric on the vector space that generates it. On 
the contrary, Ci&%rdians argue that CA is more fundamental than GA, because it contains GA 
as a subalgebra. 

As is usual in scientific disputes, both sides have a valid point to make, but are reluctant (if 
not unable) to appreciate the viewpoint of the opposition. The issue here is not “Which side is 
right?” but rather “How should mathematical knowledge be organized?” It is a problem of 
mathematical design:2>3 How to design a geometric algebra of maximal scope, coherence, 
flexibility, and simplicity! We think the solution has been around for a long time, but it has not 
been widely accepted primarily because the problem it solves has not been recognized. 

Our objective in this article is to formulate the universal geometric algebra in aflexible way 
which satisfies the demands of individuals in both the Grassmannian and Cliffordian camps. In 

%mior research associate, N.F.W.O., Belgium. 

3642 J. Math. Phys. 34 (a), August 1993 
0022-2488/93/34(8)/3642/28/$6.00 
@I 1993 American Institute of Physics 



Doran et al.: Lie groups as spin groups 3643 

the interest of mathematical harmony let us call this construct the mother algebra. The mother 
algebra embraces an enormous range of mathematical structures in both physics and pure 
mathematics. Here we review the essential formalism and rationale for adopting the mother 
algebra as a universal foundation for linear algebra as well as for the theory of Lie groups and 
Lie algebras. This is an elaboration of the approach originally developed in Ref. 4, so for the 
most part we adopt the same notation, and we refer there for many details. 

II. RECONCILING GRASSMANN AND CLIFFORD 

There is evidence that Grassmann himself became Cliffordian in his last years. In one of his 
last publications,7 ironically dismissed as inconsequential by historians, he took the momentous 
step of adding, for vectors a and b, his inner product a * b to his outer product a A b to define a 
new kind of product ab which he called the central product. Thus, he wrote 

ab=a* b+a Ab, (2.1) 

though he employed different notations for the inner and outer products. From the established 
properties of Grassmann’s inner and outer products it can be shown that his centralproduct has 
all the properties of multiplication in Clifford algebra. 5 In a certain sense, therefore, Clifford 
algebra is inherent in Grassmann’s algebra. Moreover, Grassmann published this a year before 
Clitford.8 To be sure, Grassmann’s intent7 was only to show that Hamilton’s quaternions (a 
particular Clifford algebra) were inherent in his algebra, but he undoubtedly recognized more 
general possibilities. Though the addition in Eq. (2.1) is a nontrivial extension of Grassmann’s 
original system, Grassmann plays it down and avoids giving Hamilton credit for inspiring him 
to do it, perhaps because he was bitter about the lack of recognition for his own work. In 
Grassmann’s defense it can be said that the generalization is straightforward. Clifford was led 
to the same algebraic structure by asking the same question: How can one combine quaternions 
and Grassmann’s algebra into a single mathematical system? Grassmann expressed his view in 
these words:7 “ Since extension theory makes only one arbitrary assumption, that is that there 
exist magnitudes that can be numerically derived from more than one unit, and proceeds from 
this in a completely objective way, all expressions that are numerically derivable from a number 
of independent units, and in particular the Hamiltonian quaternions, have their definition in 
extension theory and only find their scientific foundation in it. This was previously not recog- 
nized,” (translation by L. Kannenberg). No doubt Grassmann would use the same argument 
to say that Clifford algebra as we know it today is embraced by his extension theory. And 
Clifford would probably agree, as he referred to his own work’ as an “application” of Grass- 
mann’s algebra. The point of all this is that Grassmann, Hamilton, and Clifford, as well as 
Lifschitz and many others since have contributed to the development of a single mathematical 
system which cannot be justifiably associated with the name of a single individual. Today, it is 
more evident than ever that Clifford’s original term geometric algebra is the most appropriate 
name for that system, though the term “Clifford algebra” is more common in the literature. 

To reconcile the contemporary views of Grassmann and Clifford algebras, we begin with a 
standard definition of the Grassmann aigebra A, = A( Y”) of an n-dimensional real vector 
space .P. This associative algebra is generated from Y” by Grassmann’s outer product under 
the assumption that the product of several vectors vanishes if and only if the vectors are 
linearly dependent. With the notation in Eq. (2.1) for the outer product, the outer product 

v, Av2A*** Avk (2.2) 

of k linearly independent vectors is called a k-blade, and a linear combination of k-blades is 
called a k-vector. The set of all k-vectors is a linear space 
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A;l=Ak( Y”), (2.3) 

with dimension given by the binomial coefficient (i) . With the notations Ai= V’ and AZ =9? 
for the real scalars, the entire Grassmann algebra can be expressed as a 2n-dimensional linear 
space 

A,= i A;. 
k=O 

(2.4) 

This completes our description of Grassmann’s “exterior algebra,” but more mathematical 
structure is needed for applications. Standard practice is to introduce this structure by defining 
the space of linear forms on A,, . However, we think there is a better procedure which is closer 
to Grassmann’s original approach. 

We introduce an n-dimensional vector space Y”* dual to .Vn with “duality” defined by the 
following condition: If {Wi} is a basis for Y”, then there is a basis {w,*} for F”* defining 
unique scalar-valued mappings denoted by 

Wi* ’ Wj=~~S,, for i,j= 1,2 ,..., n. 

The dual space generates its own Grassmann algebra 

(2.5) 

A*(Y”)=A;= i Af. 
k=O 

(2.6) 

The inner product (2.5) can be extended to a product between k-vectors, so that each k-vector 
in A? determines a unique k-form on Y”, that is, a linear mapping of Af: into the scalars. In 
other words, Aff can be regarded as the linear space of all k-forms. 

This much is equivalent to the standard theory of linear forms, though Eq. (2.5) is not a 
standard notation defining one-forms. The notation has been adopted here so Eq. (2.5) can be 
interpreted as Grassmann’s inner product, and A,, and Ax can be imbedded in a single geo- 
metric algebra with a single central product defined by Eq. (2.1). One way to do that is by 
identifying A,, with A,*, but then Eq. (2.5) defines a nondegenerate metric on Yn, and Grass- 
mannians claim that that is a loss in generality. Cliffordians counter that the loss is illusory, for 
the interpretation of Eq. (2.5) as a metric tensor is not necessary if it is not wanted; with one 
variable held fixed, it can equally well be interpreted as a “contraction” defining a linear form. 
Be that as it may, there really is an advantage to keeping A,, and A: distinct, in fact maximally 
distinct, as we see next. 

We turn A, and Ax into geometric algebras by defining the inner products 

Wi’Wj=Q and ~7. wT=O, (2.7a) 

so Eq. (2.1) gives 

Wi A Wj = W,~j = - WjWi and Wr A WT = WFWy = - Wj*WT . (2.7b) 

Also, we assume that the Wi and the wr are linearly independent vectors spanning a 2n- 
dimensional vector space 

.gpn= y-” @ p-n*, (2.8) 

with an inner product defined by Eqs. (2.5) and (2.7a). This generates a 2”‘-dimensional 
geometric algebra which we denote by 
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(2.9) 

with k-vector subspaces Sk,,= 9 k( 9Pn,,) = 9 k( 9P’). Anticipating the conclusion that it will 
prove to be an ideal tool for characterizing linear and multilinear functions on an 
n-dimensional vector space, let us refer to .9?:n,n as the mother algebra. 

Ill. STRUCTURE OF THE MOTHER ALGEBRA 

Before continuing our study of the mother algebra, we review some definitions and results 
from Ref. 4 which enable algebraic manipulations in any geometric algebra without referring 
to a basis. 

A generic element M of the algebra is called a multivector, and it can be decomposed into 
a sum of its k-vector parts, that is, parts (M)k of grade k, thus, 

M=(M)o+W)I+(M)~+~~~. (3.1) 

The geometric product is denoted by MN and the “main antiautomorphism” (or reversion) is 
defined and denoted by 

(MN)+=N+M+, (3.2a) 

@Of=(Mh. (3.2b) 

The geometric product AB of an r-vector A = (A), with an s-vector B= (B), has the decom- 
position 

AB=(AB),+,+(AB)~+~--~+...+(AB)I~-~I. (3.3) 

Grassmann’s inner product A * B and outer product A A B can be defined in terms of the 
geometric product by 

A * B= UB) Ir--s~ t (3.4) 

A A B= (AB),,,. (3.5) 

For vectors a=(a), and b=(b),, Eq. (3.3) reduces to 

ab=a. b+a Ab, (3.6) 

with 

a * b= (ab)o=f(ab+ba), (3.7) 

a Ab= (ab)2=i(ab-ba). (3.8) 

As Eq. (3.6) is identical with Eq. (2.1), we can identify the geometric product with Grass- 
mann’s central product. However, the logic is reversed here, and the inner and outer products 
are derived from the central product, as in Eqs. (3.7) and (3.8) or, more generally, in Eqs. 
(3.4) and (3.5). 

The definitions of inner and outer products greatly facilitate manipulations without spec- 
ifying a basis in the algebra, and for this purpose, a system of identities interrelating inner and 
outer products has been developed in Chap. 1 of Ref. 4. As shown there, these identities suffice 
for developing the entire theory of determinants. To counter the mistaken impression that use 
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of the inner product limits the theory to metric spaces, we point out that it embraces the 
standard theory of determinants on the Grassmann algebra A, simply by imbedding A,, in the 
mother algebra 9”,n. Thus, every determinant of rank r can be represented by 

A * B*= (AB*),, (3.9) 

where A=(A), is in AL and B*=(B*>, is in A:. The Laplace expansion and many other 
classical theorems of determinant theory are derived in Ref. 4, Chap. 1. 

For a=(a), and B=(B),, Eq. (3.3) generalizes Eq. (3.6) to 

aB=a* B+aAB. (3.10) 

For a bivector (or two-vector) A= (A)2, Eq. (3.3) yields 

AB=A * B+Ax B+A A B, (3.11) 

where A X B is the commutator product, defined by 

Ax B=f(AB- BA). (3.12) 

This product is a “derivation” on the algebra, as expressed by 

Ax(BC)=(AxB)C+B(AxC). (3.13) 

This implies the Jacobi identity 

Ax(BxC)=(AxB)xC+Bx(AxC). (3.14) 

For a bivector A= (A)*, the commutator product is also “grade-preserving,” that is, for any 
multivector M 

AX (M),= (AxM),. (3.15) 

It follows that the space of bivectors is closed under the commutator product, so it forms a Lie 
Algebra (called a bivector algebra). It was conjectured in Chap. 8 of Ref. 4 that every Lie 
algebra is isomorphic to a bivector algebra. We shall see how to prove that in Sec. IV. 

Returning to the study of &‘,,+ , we first examine the properties of alternative bases for the 
generating vector space 9Pn. According to Eq. (2.5), the basis {Wi,WT} consists entirely of 
nuN vectors. Nevertheless, we can construct from these an orthonormal basis {ei,iY;} defined by 

ei’Wi+Wr, (3.16a) 

Fi=Wi-WT* (3.16b) 

From Eqs. (2.5) and (2.7) it follows that 

ei* ej=Sij, ei* ifj=O, qzj=-&ij. (3.17) 

The basis {eJ spans a real Euclidean vector space .9”‘, while {q] spans an antiEuclidean space 
3”. Therefore, as an alternative to Eq. (2.8), .%‘“*n admits the decomposition 

9n,n=gp Q 9)“. (3.18) 

From the basis {ei ,&} we can construct (p+q)-blades 
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(3.19a) 

where 

EP=ele2 ***eP=EP,o, (3.19b) 

E4=F& .+P=EO,q. (3.19c) 

Each blade determines a projection &‘,,4 of #‘I” into a (p + q) -dimensional subspace .@ptq 
defined by 

The vector a resides in SpPq if and only if 

aAEp,q=O=aEp,q+(-l)P+qEp,qa. (3.21) 

Incidentally, we use an underbar to distinguish linear operators from elements of the algebra. 
This notation has the advantage of allowing us to designate the operator by a multivector 
which determines it, as in Eq. (3.20)) where the operator &q is determined by the blade Ep,q. 
Reference 4 develops many properties and applications of projection operators like Eq. (3.20). 

For p+q= n, the blade Ep,, determines a split of SV” into orthogonal subspaces with 
complementary signature, as expressed by 

~W =cgP.4 $ zj.yP+l* (3.22) 

This generalizes Eq. (3.18)) and Eq. (3.20) shows how a similar split is determined by every 
invertible n-blade in SE,, without referring to any basis vectors. 

For the case q=O, Eq. (3.20) can be written 

&(a> =f(a+a*), (3.23) 

where a* is defined by 

a*= (- l)“+‘EnaE;‘. (3.24) 

It follows immediately that et = ei and ( Zi) * = -Zi. Comparison with Eqs. (3.16a) and (3.16b) 
shows that w: can indeed be obtained from Wi by applying Eq. (3.24), so the notations are 
consistent. 

The split (2.8) of 5P’ into subspaces of null vectors cannot be obtained in the same way 
as the split (3.22)) because the Grassmann algebra A,, does not contain any invertible n vectors. 
To describe such a split in an invariant way we need a new concept. 

Let K be any bivector in &‘i,, which can be expressed as a sum of n distinct commuting 
blades Ki with unit square, thus 

K= i Ki, (3.25) 
i=l 

where 

KiXKj=O and Kf=l. (3.26) 
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For given k and n>2 the decomposition of K into blades is unique if and only if distinct blades 
have different magnitudes, as shown in Sets. III or IV of Ref. 4. The bivector K determines an 
automorphism of g”*” 

K:a+Ci=Ka=aXK=a*K. (3.27) 

This maps each vector a into a vector Z which we call the complement of a (with respect to K) . 
It is readily verified that &i=g2a =a, or, as an operator equation, 

g2=_1. (3.28) 

Thus, & is an involution. Furthermore, 

a*Z=O, (3.29) 

and the vectors 

(3.30) 

are null vectors. In fact, the sets {a+} and {a-} of all such vectors are dual n-dimensional 
vector spaces, so K determines the desired null space decomposition of the form (2.8) without 
referring to a vector basis. 

From the basis {ei,q} a suitable K can be constructed by taking 

Then, indeed, 

(3.31) 

(3.32a) 

and, in accordance with Eq. (3.28), 

@i=ei. (3.32b) 

Therefore, ei and c are complementary pairs, as the overbar notation was chosen to indicate. 
Now it is evident that K determines a unique correspondence between the complementary 
spaces L!%‘~*~ and gpPq. 

From Eqs. (3.16) or (3.30) it is easily seen that the null basis {wi,$} consists of K 
eigenvectors with 

(3.33a) 

(3.33b) 

The basis {Wi,W:} is called a Witt basis in the theory of quadratic forms. The conventional 
approach to quadratic forms, as elegantly expounded in Ref. 9, for example, laboriously es- 
tablishes many theorems before arriving after a long detour at the concept of Clifford algebra 
as the algebra of a quadratic form. Even then the special significance of the mother algebra as 
a covering algebra for quadratic forms of every possible signature and degeneracy is not 
recognized. We submit that the theory can be greatly simplified and unified by introducing the 
mother algebra and establishing its properties at the outset. The standard theorems about 
bilinear and quadratic forms can then be established more simply and directly from these 
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properties. Moreover, form theory is thereby automatically related to the vast range of other 
applications of the mother algebra and its subalgebras. This will be evident in our treatment of 
group theory in subsequent sections. 

The mother algebra s,,, is, of course, a subalgebra of the infinite dimensional algebra 
.9? oo,oo, which might be called the grandmother algebra or “Eve”. Reference 4 contends that 
“Eve” should be regarded as the universal geometric algebra and adopted as the arena for 
developing a coordinate-free formulation of manifold theory. Eve has already been employed in 
physics as the CO -dimensional algebra of fermion creation and annihilation operators. Indeed, 
using Eq. (3.7) to rewrite Eq. (2.5), we obtain 

WrWj f WjWy =Sij * (3.34) 

This will be recognized as the fundamental equation for fermion operators (See Ref. 10, for 
example). However, in this general mathematical context the anticommutivity of “fermion 
operators” expressed by Eq. (2.7b) is not an expression of the Pauli principle as it is in 
quantum field theory; it is merely an expression of linear independence. 

IV. THE GENERAL LINEAR GROUP AS A SPIN GROUP 

There are many kinds of linear functions, but those mapping vectors to vectors are espe- 
cially significant, so we reserve the term linear transformation to refer to them. Moreover, 
adopting the perspective of geometric algebra, we associate with every vector space a geometric 
algebra generated by the geometric product. In other words, along with scalar multiplication 
and vector addition, we regard the geometric product as a defining property of the vector 
concept. One advantage of this perspective is that geometric algebra contains all the apparatus 
needed to characterize and analyze linear transformations. In fact, we shall prove that all linear 
transformations can be represented as geometric products. Let f be a linear transformation 
defined on a given vector space. The characterization off is facilitated by its outermorphism,3*4 
a grade-preserving extension off to the entire geometric algebra, which is defined, for vectors 
a,b,..., by 

f(aAbA***)=(fa) A(fb) A--*. (4.1) 

The outermorphism derives its name from the fact that it preserves the outer product. It 
describes the essential mathematical structure underlying the concept of determinant. In fact, 
if P is a pseudoscalar for the vector space on which f is defined, the determinant off is defined 
by the “eigenblade equation” 

f(P)=(det f)P. (4.2) 

We are concerned here with linear transformations on Z%‘n,n and its subspaces, especially 
orthogonal transformations. An orthogonal transformation Jj is defined by the condition that 
it leaves the inner product invariant, that is, 

(Ra) . (Rb) =a. b. (4.3) 

It is called a rotation if det 1p = 1, that is, if 

RWnJ =En,,, (4.4) 

where, as defined by Eq. (3.19a), E,,n = EzL is the unit pseudoscalar for gnVn. The rotations 
form a group called the special orthogonal group SO( n,n) . 

Geometric algebra makes it possible to express every rotation in the canonical form 
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Ra=RaR+, (4.5) 

where R is an even multivector (called a rotor) satisfying 

RR+= 1. (4.6) 

The rotors form a multiplicative group called the spin group or spin representation of SO( n,n ), 
and it is denoted by Spin(n,n). Spin( n,n) is said to be a double covering of SO(n,n), since Eq. 
(4.5) shows that both &R correspond to the same & 

It follows from Eq. (4.6) that the inverse 8-l - -JJt of the rotation (4.5) is given by 

Rta=RtaR. (4.7) 

This implies that 

a - (Rb) = (aRbR+)o= (bR+aR)o=b * @+a), (4.8) 

where the fact that (ABC),,= ( BCA)o has been used. In other words, the adjoint of a rotation 
is equal to its inverse. It is worth remarking that sometimes the spin group is defined by writing 
R-’ instead of Rt in Eq. (4.5). Then it contains additional elements [the Ki in Eq. (3.31)] 
which are not continuously connected to the identity. We exclude those elements from the 
group, though it will be seen that they belong to the Lie algebra of the group. 

It can be shown that every rotor can be expressed in the exponential form 

R= he(1/2)8, with Rt= *ee-(‘“)B, (4.9) 

where B is a bivector called the generator of R or I& and the minus sign can usually be 
eliminated by a change in the definition of B. Thus, every bivector determines a unique rota- 
tion. The bivector generators of a spin or rotation group form a Lie algebra under the com- 
mutator product. This reduces the description of Lie groups to Lie algebras. The Lie algebra of 
SO(n,n) and Spin(n,n) is designated by the lower case notation so(n,n). It consists of the 
entire bivector space 9?;“,,,. Remarkably, every Lie algebra is a subalgebra of so( n,n) . Our task 
will be to ‘prove that and develop a systematic way to find them. 

Lie groups are classified according to their invariants. For the classical groups” the invari- 
ants are nondegenerate bilinear or quadratic forms. Geometric algebra supplies us with a 
simpler alternative system of invariants, namely, the multivectors which determine the bilinear 
forms. As emphasized in Ref. 4, every bilinear form can be written as a - (Qb), where Q is a 
linear operator, and the form is nondegenerate if Q is nonsingular (i.e., det -@+O>. Invasance 
under a rotation & is expressed by 

@a) * (@b)=a* ($?b). (4.10) 

Using Eq. (4.8) this can be reformulated as 

a- @@b>=a* (gb). (4.11) 

Expressed as an operator equation this condition becomes 

B+@ = Q=BQR+, - -- (4.12) 

or equivalently, 

@=kg?. (4.13) 
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Thus, the invariance group of the quadratic form consists of those rotations which commute 
with Q. 

& a simple example, consider the bilinear form a . b* determined by the involution (3.24) 
which distinguishes the subspaces 2” and gn. From Eqs. (3.24) and (4.7), the condition 
(4.12) in this case reduces to an equivalent multivector equation 

gE,,=RE$+=E,,. (4.14) 

Thus, invariance of the bilinear form a * b* is equivalent to invariance of the n-blade E,, . Using 
this fact, we can immediately construct a basis for the Lie algebra from the vector basis {ei,q} 
of the * operator. Thus, we obtain the generator basis 

eij=egj, for i<j=1,2 ,..., n, 
(4.15) 

Fkl=F&, for k <I= 1,2 ,..., n. 

Any generator B in the algebra can be written in the form 

B=a:e+P:F, (4.16) 

where 

a:e= C djeij 
i<j 

(4.17) 

denotes a linear combination with scalar coefficients aii. The corresponding group rotor is 

Rze’1/2)(a:e+B:a =,(1/2)U:ee(1/2)8:? (4.18) 

This, of course, is the spin representation for the product group SO(n) 8 SO(n). Since it is 
determined by the invariance of E,, in Eq. (4.10), it is said to be the stability group of E,, . No 
direct reference to a quadratic form is needed to characterize it. 

To facilitate the systematic analysis of less obvious cases, we need some general theorems. 
As proved in Ref. 4, every skew-symmetric bilinear form can be written in the form 

a-($jb)=a*(b*Q)=(aAb)-Q, (4.19) 

where Q is a bivector, and, of course, Q is the corresponding linear transformation. We say that 
the bivector Q is involutory if Q is n&singular and 

_e’= *I. (4.20) 

At this point a warning is in order. The operator equation (4.20) applies only to the action of 
Q on vectors and not to the outermorphism acting on multivectors of higher grade, as will be 
demonstrated below. 

By virtue of the fact that (Ra ARb) * Q= (a Ab) * $+Q, invariance of Eq. (4.19) is equiv- 
alent to the stability condition 

g+Q=R+QR=Q. (4.21) 

In other words, the invariance group of any skew-symmetric bilinear form is the stability group 
of a bivector. 
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From Eq. (4.2 1) it follows that generators of the stability group G(Q) for Q must com- 
mute with Q. To ascertain the consequences of this requirement, we study the commutator of 
Q with an arbitrary two-blade a A 6. Since a A b =a X b, the Jacobi identity (3.14) implies 

(aAb)XQ=(aXQ) Ab+aA(bXQ)=(ga) Ab+aA(gb), (4.22) 

and then 

[(aAb)XQlXQ=[(ea)Ab+aA(eb)lXQ=(_e’a)Ab+2_e(aAb)+aA(_e26). 
(4.23) 

Applying the condition (4.20) and extending (4.23 ) by linearity, we arrive at the theorem 

(BxQ)xQ=2(QBztB) (4.24) 

for any bivector B. Thus if B commutes with Q, then 

gB=rB, (4.25) 

where the signs are opposite to those in Eq. (4.20). In other words, the generators of G(Q) are 
eigenbivectors of Q with eigenvalues r 1. 

Now, by empLying Eq. (4.22) we verify that for any vectors a and b the condition (4.25) 
can only be satisfied by the bivectors 

Eta&) =aAh (@I A C_eb) (4.26a) 

and 

F(a,b)=aA(Qb)-(Qa) Ab. - (4.26b) 

This is to say that 

E(a,b) X Q=O=F(a,b) x Q. (4.27) 

Thus E(a,b) and F(a,b) are the desired generators of the stabiiity group for Q. A basis for the 
Lie algebra is obtained by inserting basis vectors for a and b. 

The commutation relations for the generators E(a,b) and F(c,d) can be found from Eqs. 
(4.26a) and (4.26b) by applying the following identity from Ref. 4, which is just a two-fold 
application of the Jacobi identity: 

(aAb)x(cAd)=(b*c)aAd-(b*d)aAc+(a+d)bAc-(a*c)bAd. (4.28) 

This is, in fact, the so-called structural equation for the Lie algebra of the orthogonal group. 
The “stmcture” is all contained in the inner and outer products; no special Lie structure 
coefficients need be mentioned. Equations (4.26a) and (4.26b) show how the structure is 
changed by Q to get the subalgebra for the stability group of Q. Evaluation of the commutation 
relations is simplified by using the eigenvectors of Q for a basis, so it is best to defer that task 
until Q is completely specified. 

N%w as an important application of these results, we identify Q with the complementation 
bivector K in Eq. (3.25)) and we note from Eq. (3.28) that K2 =l. We choose an orthonormal 
basis which factors the component blades Ki into orthogonal factors as in Eq. (3.3 1). Then 
using Eqs. (3.32a) and (3.32b) we obtain immediately a generator basis for the stability group 
of K, namely, 
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Eij=E(ei,ej) =eiej-qFj (i< j), (4.29a) 

Fij=F(ei,ej)=eie7i-eiej (i< j), (4.29b) 

for i,j= 1,2 ,..., n. 
The stability group of K can now be identified as the general linear group GL(n,.B’). To 

establish that, we first prove that it leaves the null vector spaces 7’ and Y”* invariant. These 
spaces have pseudovectors 

(4.30a) 

(4.3Ob) 

From the eigenvalue equations (3.33a) and (3.33b) we find immediately that 

K( W/l) = wn (4.31a) 

and 

K(fi)=(--l)“fl, (4.31b) 

which proves that Y” and Y”* are invariant. These relations will be preserved only by 
rotations which commute with 5. It follows that W,, must be an eigenblade for every member 
of the stability group. More about that below. 

Since each group element B leaves Y’ invariant, we can write 

n 
RWj= kzl wkPkj- (4.32) 

Then using Eq. (2.4) we can solve for the matrix elements 

(4.33) 

This shows us how to compute the matrix elements from the spin representation R of the 
group. The number of independent elements is n2, which is precisely the number of linearly 
independent generators in Eqs. (4.29a)-(4.29c). This completes our proof. 

The identification of the bivectors (4.29a)-(4.29c) with the Lie algebra gl( n,S?) has 
important consequences. First, it proves the conjecture in Ref: 4 that every Lie algebra is 
isomorphic to some bivector algebra, for it is well-known that every Lie group is isomorphic to 
a subgroup of the general linear group. Indeed, all Lie algebras have a real matrix represen- 
tation via the “adjoint representation,” and we have shown how that can be realized in a 
bivector algebra in general. However, this is not usually a helpful way to construct the algebras. 
Explicit construction of bivector versions of the classical Lie algebras is undertaken in Sec. VI. 

Another consequence of Eqs. (4.29a)-(4.29c) is that every positive definite, nonsingular 
linear transformation can be represented by a spinor of the form 

R = e( 112) (a:E+fl:F+/‘:K) (4.34) 
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The composition of linear transformations is then described as the product of such spinors. It 
is well established that the computation of composite rotations with such “spin representa- 
tions” is decidedly more efficient than standard matrix methods. So we may expect the same for 
general linear transformations. Therefore Eq. (4.34) deserves intensive study, and from our 
knowledge of matrix theory, we can expect a rich body of results to follow. 

Some comments on the interpretation of Eq. (4.34) and alternative forms for a spinor are 
in order. It is known already in the case of rotations that the exponential form for spinors is not 
optimal for most computational purposes, but it is, of course, appropriate for a Lie algebra 
analysis. Comparing the Eij in Eq. (4.29a) with Eqs. (4.15) through (4.18), we see that they 
generate rotations of .B”” and 3” in tandem, and, by virtue of Eq. (3.30), this can be inter- 
preted as the orthogonal group SO(n) on T”. 

The rotations can be described on 7”” without reference to 9’“. For any member 4 of 
GL( n&G’), the outermorphism of W,, satisfies 

RW,= W,deblZ, (4.35) 

where the subscript on dets is to distinguish it from the determinant on the whole of ZPn. 
From Eqs. (4.30a), (4.3Ob), and (2.5) it is easily ascertained that 

c- wf;=2-“. (4.36) 

Therefore, 

(4.37) 

Similarly, since B - l= &+, 

(4.38) 

so 

&q= c det,,&-‘. (4.39) 

Since every B is a rotation on the whole of 6VgnVn, we have 

R(W,A~)=(RW,)A(RW;r)=W,A~, (4.40) 

whence we obtain the “classical result” 

(detc&)(deta&-‘)=l. (4.41) 

Next consider the spinor 

(4.42) 

According to IQ. (3.33a) the Wi are eigenvectors of K, whence 

@JJi= DWiD+=~Z,wi, (4.43) 

with eigenvalues 

Ai=@. (4.44) 
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Therefore, 1, is a symmetric linear transformation which is “diagonalized” by the eigenvectors 
wi . According to the “diagonalization theorem,” therefore, any positive definite symmetric 
linear transformation _S can be represented as a spinor S of the form 

S=RIDRf, (4.45) 

where 

R1=e(l/2)alE (4.46) 

represents the rotation which diagonalizes S. 
The polar decomposition theorem asserts that Eq. (4.34) is equivalent to 

R=R2S, (4.47) 

where R2 “is” another rotation. Since R3 = R2R i “is” also a rotation, we have the result 

R=R3DR1=e(‘/2)a3:Ee(l/2)‘1:Ke(l/2)a,:E 

As a check, note that this also has n2 parameters. 
Inserting Eq. (4.47) into Eq. (4.37), we easily obtain the classical result 

(4.48) 

(4.49) 

Though we have interpreted the above spinors as representing linear transformations on 
the invariant space Y”, they can also be interpreted as linear transformations on 2” by 
employing the projection operator &=g,,e defined by Eq. (3.20) to write 

ITE=E,R - - (4.50) 

for the corresponding operator on 6%“. Of course, the projection operator introduces compli- 
cations which are avoided by working on Yn. 

The above remarks serve to illustrate the powerful potential of the spinor version of linear 
algebra. Its generalization to include arbitrary linear transformations will be obtained in the 
next section. 

Returning to group theory, we note that K commutes with all other elements of the Lie 
algebra gl (n,9 ), so it generates a one-dimensional invariant subgroup of GL (n,.@ > . We can 
remove it from the group by replacing the Ki in Eq. (4.29c) by 

Hi=Ki-Ki+l (i=1,2 ,..., n-l). (4.51) 

Along with Eij and F, in Eq. (4.29a)-( 4.29c), these bivectors generate the special linear group 
SL( n,Z?), the subgroup of GL(n,S?) for which the determinant (4.49) is unity. 

Finally, we compose the complementation operator & with the *-operator (3.24) to pro- 
duce an operator & defined by 

&a=Ka*= (a*) *K. (4.52) 

It follows that 

Hence 

&?j=Fj, &Fj=-ej. (4.53) 
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Ki=-1. (4.54) 

Also, in analogy to Eq. (4.25 ), &, defines a new Lie algebra with generators defined by the 
outer-morphism condition 

K*(B)=--B. 

From this we construct a generator basis for the invariance group of g* 

(4.55) 

Eij=eiej-&Z”, (4.56) 

Fij=eiej+qej, (4.57) 

(i,j= 1,2 ,...,n, i< j). These are generators of the complex orthogonal group SO(n,V). The 
complex structure is defined on .9Pn by the operator &, which plays the role of &-l. 

For odd n, K is the only kind of involutory bivector. However, there are others when n is 
even, and their invariants determine other groups which are discussed in Sec. VI. 

The general linear group GL(p,q) can be obtained and analyzed in essentially the same 
way as the Euclidean case, with E, replaced by EP,q, and the corresponding null space pseu- 
doscalar W,, replaced by W,,, = w1 * * * wPw,*+ 1 - * * wX . 

V. ENDOMORPHISMS OF 92” 

Now we develop an alternative argument leading to the conclusion that the mother algebra 
9n,n is the appropriate arena for the theory of linear transformations and Lie groups. We show 
how it arises naturally as the endomorphism algebra Z#‘&,%“,), the algebra of linear maps of 
the Euclidean geometric algebra 9?,, onto itself. This algebra is, of course, isomorphic to the 
algebra of real 2nX2” matrices, that is, 

~nd(s?J ZR(2”). (5.1) 

For an arbitrary multivector A in sn, left and right multiplication by basis vectors ei determine 
endomorphisms of 9” defined by 

gi*A +gi(A) =eJ, (5.2a) 

PiA + E i(A) =Jei, (5.2b) 

where, for the moment, the overbar indicates the main involution of 9?,, defined by 

(AB)=AB and q= -ei. (5.3) 

We shall see below that this is consistent with our overbar notation in 9?n,n. The operators gi 
are clearly linearly independent, and they satisfy the operator relations 

gigj++_ee_ei=26ij f (5.4a) 

Pigj+ Pjzi=-26ij* (5.4b) 

_eiH j+ P jsi=O. (5.4c) 

By virtue of Eq. (3.7), these relations are isomorphic to the defining relations (3.17) for the 
vector basis {ei,<3 in 9”,n. This establishes the algebra isomorphism 
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s?‘,,,~%h!(99’,). (5.5) 

The above defining equations for this isomorphism were first formulated in Ref. 12. The role of 
the main involution in determining the negative signature in Eq. (5.4b) is especially notewor- 
thy. Its significance can be explained as follows. 

The composite operators 

(5.6) 

generate cc;9uZ’(9J, a subgroup of ZY:,&S,,) which preserves the geometric product. It is 
also a subgroup of the group of nonsingular outer-morphism on .@,, , which are generated by the 
general linear group on .%“. In fact, it is the outermorphism of the orthogonal group, because it 
preserves the inner product. Thus, action of the operator (5.6) on vectors defines the funda- 
mental linear transformation 

fi: a-t&a= -f?iat?i. (5.7) 

As is well-known, this transformation is a reflection in a hyperplane with normal ei, and the 
entire orthogonal group O(n) is generated by products of such reflections with ei ranging over 
all unit vectors in 9’“. The bivector outermorphism of Eq. (5.7) is 

fi(aAb)=ei(aAb)ei. - (5.8) 

Note that the sign difference between (5.7) and (5.8) is just what is required by the involution 
in Eq. (5.6). Thus, the involution is essential to generating .&&(9’,). 

As observed in Chap. 3 of Ref. 4, all symmetric transformations are generated by linear 
combinations of the operators in Eqs. (5.7)) while orthogonal transformations are generated by 
their products. A big advantage of representing these linear transformations in S?,,, is that both 
symmetric and orthogonal transformations are generated by products, as we saw in the pre- 
vious section. 

Our next task is to prove that the mother algebra contains a 2”-dimensional subspace 9, 
on which all the endomorphisms of CSe, are faithfully represented by left multiplication with 
elements of Sp,, . The space Y, is called a spinor space and its elements are called spinors. It 
is a minimal left ideal of 9’n,n, and its construction is easily described after establishing the 
relevant algebraic relations. The same construction is employed in Ref. 13, and it is implicit in 
many other works on physics and mathematics. 

From the null vectors 

(5.9) 

we construct a family of commuting idempotents Ii, which can be expressed in the several 
different ways 

Ii=W~Wi=~(l+e~i)=~( l+Ki)=ei Wi=WTei=W~Zi=-~Wi, (5.10) 

for i= 1,2,...,n. The idempotence and commutative properties are expressed by 

IfEli, IiXIj=O* (5.11) 

The relations (5.10) will be more useful as expressions for the effect of left and right multi- 
plication on Ii 

eiIi=i?iIi= Wi Ii= Wi=WiWTWiy (5.12) 
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(5.13) 

From the Ii we construct the “mother idempotent” 

I=IJ~***I*= VW;= c+W”, (5.14) 

where it will be recalled from Eq. (4.30a) that W,, is the pseudoscalar for the null space Y’. 
The impotence property 

12=1 (5.15) 

follows from Eq. (5.10). 
From Eq. (5.12) it follows that 

(5.16) 

and further that 

EJ=&I=WJ=W,,. (5.17) 

This establishes an equivalency of the vector spaces 9”, L??~, and V. Indeed, I completely 
characterizes the relations among them. Thus, it specifies the involutory bivector 

K=2”(I)2=K1+K2+..*+K,, (5.18) 

as well as its relation to the pseudoscalar 

-%,n=2”Uh,=K,K2 .**K,,=Ej&,= w;:A Wt;. (5.19) 

Comparison with Eq. (5.17) yields 

E,,J= I. (5.20) 

The spinor space 9, is generated by left multiplication of I by the entire mother algebra, 
as expressed by 

(5.21) 

The multiplicative equivalence of ei and ei implies that Y”, has the dimension of LB’,, , namely, 
2”, though the operators on it have the dimension of the algebra 9,,*, namely 2”~ 2n. With the 
above preparation, it is easy to establish the interpretation of operators on 9, as endomor- 
phisms of L@~. 

First, using Eqs. (5.20) and (5.16), we see that 

(5.22) 

Therefore, multiplication of Y,, by E,,, corresponds to the main involution in L%‘~, as expressed 
by 

Kt,n~n u g’, . (5.23) 

In view of the operator relations (5.4a)-(5.4c) the definitions (5.2a) and (5.2b) give the 
correspondences 

(5.24) 

J. Math. Phys., Vol. 34, No. 8, August 1993 



Doran et a/.: Lie groups as spin groups 3659 

(5.25) 

and the latter combines with Eq. (5.23) to give 

+f&Y, U s’,ei. (5.26) 

Lastly, it is easily established that reversion in B,,n corresponds to reversion in .@,,. The 
interpretation of spinor space operators as .%‘,, endomorphisms is now completely established. 
The rest is calculation. 

Of special interest is the endomorphism correspondence for GL(n,.@). We consider the 
orthogonal group first. For any unit vectors u, Y,..., in s’n, Eqs. (5.24) and (5.25) give the 
correspondences 

UlzF, u &?&l, (5.27) 

W-UCY, u vus?),uv. (5.28) 

As noted earlier, the first of these is (the outer-morphism of) a reflection in .%““, while the 
second, a double reflection, is a rotation in the u A v plane. The generalization is immediate. 
For k-vectors ul, u2,..., in 5’” let us write 

whence 

U(k)=Ukuk-,-“u2U1 and U(k) =il&,+t’ “&Et, (5.29) 

where ek= (-1) (1’2)k(k-1). For odd k, therefore, 

EkU(k,U(k)yn * u(k,~&k, , (5.31) 

and for even k, 

(5.32) 

Equations (5.31) and (5.32) describe the complete orthogonal group O(n) as an automor- 
phism group of sR. The multiplicative group of unit vectors in sp”, exemplified by U(k) in Eq. 
(5.29), is called the Pin group of s,, and denoted by Pin(n). Clearly Pin(n) is a double 
covering of 0 ( n > . The subgroup for even n is Spin ( n ) , the double covering of SO ( n ) . Adopting 
the notation of Eq. (4.19), it can be shown that, for even I, the u(k) in Eq. (5.29) which are 
continuously connected with the identity can be written in the exponential form 

U(,, =etl/2)“:e~ (5.33) 

Therefore 

(k~~k)~(k)=e(l/2)a:ee-(1/2)a:5=e(l/2)cx:(e-~ (5.34) 

With E=e-F, we see that this is exactly the rotor representation for elements of O(n) given 
by Eq. (4.56). Moreover, it is absolutely clear that the two-bladed structure of the bivector 
generators Eij=egj- ep-i represents concurrent left and right multiplications of Z?,, as in Eq. 
(5.32). 

Next we determine the “correspondence rule” for the diagonal operators 
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D,=e(1/2)~iKi=e(1/2)~Lie,~i. 
I (5.35) 

It will be convenient to drop the subscripts and write 

(5.36) 

This is the well-known “spin representation” for a Lorentz transformation or boost in the 
hyperbolic plane of the bivector eZ=e A F. It has been thoroughly studied in Ref. 3, where it is 
used to represent dilatations in the conformal group, and the decomposition into a product of 
unit vectors u and v on the right side of Eq. (5.36) is explained. The parameters a: and fl are 
related by 

DD+=u*&a*-fl*= 1. (5.37) 

For comparison, we consider first the action of D on the null vector w =i( e+ Z). From Eqs. 
(5.9) and/or (5.10) we note 

eFw= -w= -weF or wX (eZ) =w, (5.38) 

whence, 

I)w= DwD+=dw= (a-/3)*w. (5.39) 

The projection of this into 2” defined by Eq. (4.50) gives 

Djde) =&D(w) = (a-p)*e, (5&a) 

and for any vector e, orthogonal to e, 

We1 > =el , (5&b) 

thus pE describes a stretch along e by the positive factor (a-p)*. 
In contrast, from Eq. (5.36) we get the endomorphism correspondence 

DY,=uvY, u @Z’ln=aSm+fie??ne. (5.41) 

For a vector a in SP’, by virtue of Eq. (5.38) and the identity ae= -ea+2a * e, Eq. (5.41) gives 

_Da=(a+fi)a-2fla*ee. (5.42) 

This is the composite of a dilatation of 9” by (a+P) with a stretch along e by the factor 
(a-fl)(a+B)-‘=(a-/3)*, in agreement with Eq. (5.4Oa). 

These results generalize trivially to give the correspondence theorem for an arbitrary 
“diagonal” transformation represented by Eq. (4.42). The correspondence for any other sym- 
metric transformation follows from Eq. (4.45) by composition with a rotation. This suffices to 
establish the correspondences for GL(n,.%‘), though much more can, and no doubt will, be said 
about the subject. Incidentally, it should be evident from the foregoing that to each symmetric 
linear transformation 2 on S?” there corresponds a decomposition of the involutory bivector K 
into commuting blades which represent the eigenvectors of S. 

There is one more basic type of transformation to consider. Combining Eqs. (5.24) and 
(5.25), we obtain 

(5.43) 
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(5.44) 

Thus, the “fermion creation operator” Wi can be represented in the real Euclidean gp, by an 
outer product which raises the grade of every multivector by one unit. Similarly, the “annihi- 
lation operator” ~7 can be represented in 9, by the grade lowering inner product. This 
correspondence has been exploited in Ref. 14 to reformulate Grassmann/Berezin calculus in 
9,,, leading to simplifications in the theory of pseudoclassical mechanics. 

Composing Eqs. (5.43) and (5.44), we obtain the grade-preserving outermorphisms 

(5.45a) 

Operating on vectors in 9”“, they become 

& (a) =i(a+epei) = (a Aei) * ei, (5.46a) 

Pi(a) =;(a-epe,) = (a * ei)ei. (5.46b) 

The first of these is the projection onto the orthogonal complement of ei, called a rejection in 
Ref. 4. Thus, li represents a projection operator which annihilates the ei direction in 9”. 
Similarly, Eq. (5.46b) is a projection onto the ei subspace in 2P, which is represented by 1: in 
%l,n* 

Having shown how projections as well as orthogonal and symmetric transformations on 
9’ can be represented in 22,,, as euen monomials (that is, products of an even number of 
vectors), we can draw a major conclusion: Every iinear transformation in 9;” can be represented 
jn .%,n as an even multivector which commutes with the complementation bivector K. This 
reduces the composition of linear transformations to geometric products among idempotents 
and rotors in Spin(n,n). The commutativity with K simplifies many manipulations, as is 
implicit in the reordering of vectors in Eq. (5.30). 

VI. CLASSIFICATION OF THE CLASSICAL GROUPS 

The classical groups are traditionally distinguished by the various quadratic or bilinear 
forms they leave invariant.15 In Sec. IV we saw that the quadratic form which distinguishes 
GL(n,.%’ ) is determined by an involutory bivector K and this provides an alternative specifi- 
cation of GL(n,S?) as the stability group of K. Here we show that many classical groups can 
be similarly class.Qied as stability groups of various involutory bivectors. This approach appears 
to be simpler and more systematic than the traditional approach, because it fully exploits the 
power of geometric algebra. However, for reference purposes we show how the two approaches 
are related. 

Our approach is to systematically search for involutory bivectors and invariant relations 
among them. As all the groups are subgroups of an orthogonal group O(p,q), the inner product 
a + b is always available as an invariant form, and the pseudoscalar EP,4 is necessarily invariant. 
Taking this for granted, we search for involutory bivectors in 9P)p,g. As defined in Sec. IV, each 
involutory bivector Q determines a skew-symmetric linear transformation Q satisfying one of 
the two conditions @= f 1, and it can exist only for vector spaces of even smension. For odd 
n the only possibilzy in 92n,n is the complementation bivector K, but for even n =2m new 
possibilities arise which we now explore. 
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A. Subgroups of O(2m) 

In the geometric algebra 92m= 9 (9*“), from an orthonormal basis {ei,c} on 92m, we 
construct the involutory bivector 

J= i eg. 
i=l 

(6.1) 

This determines the skew-symmetric transformation 

_J=a. J=Z, (6.2) 

with the involutory property 

?*a= (5~ -a. (6.3) 

Thus, J induces a complex structure on 92m. From our theorem (4.25) about Q, it follows that 
the stability group of J is the invariance group of this complex structure. This is the unitary 
group U(m). It has the same dimension as GL( m&V)), and its structure differs only in replac- 
ing &*=I by J*= -1. 

Like gl( m,.%‘), a generator basis for the Lie algebra u(m) can be written down at once 
from Eq. (4.26a) and (4.26b), namely, 

Eij=eiej+gc (i< j) (6.4a) 

Fij=eiTj-&ej (i< j) (6.4b) 

for i,j= 1,2 ,..., m. 

Ji=ei <., (6.4~) 

In analogy with the restriction of gl( m,9) to sl(m,.z% ), u(m) contains J, which commutes 
with all other elements and so generates an invariant U( 1) subgroup. We can remove J from 
the u(m) to produce generators for the speciaI unitary group SU( m) by replacing the Ji in Eq. 
(6.4~) by 

Hi=Ji-Ji+l (i=1,2 ,..., n-l). (6.5) 

In passing we note the interesting relation 

e(T12)J= J, J2* * * J,=E,, . (6.6) 

From the invariant bilinear forms a * b and a *_J we can construct a Hermitian symmetric 
bilinear form by introducing a “unit imaginary” i (which could be a bivector) and writing 

e(a,b) =a * b+i(a *_J). (6.7) 

With the definition it= -i, this has the symmetry property 

e(a,b)=e+(b,a)=b*a-i(b*_J). (6.8) 

This introduction of i is clearly an artifice for expressing the fact that U(n) leaves two distinct 
bilinear forms invariant, one of which is skew-symmetric. The properties assigned to i have no 
essential relation to the underlying group structure, though the standard choice i*= - 1 reflects 
the involutory relation (6.3). Moreover, the use of Hermitian forms hides the essential role of 
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J and so makes it difficult to relate to other groups. In particular, the stability group of J is the 
symplectic group Sp (m,9 ). Since U(m) leaves a * b invariant as well as J, we have the group 
relation 

U(m) =0(2m) nSp(m,9). (6.9) 

We have introduced J as a splitting operator which splits .92m into equivalent orthogonal 
subspaces 9”’ and 3”’ with bases {ei} and {&}. Alternatively, it is often convenient to regard 
J as a doubling operator which generates %‘lz”‘=9Pm @ grn from grn. 

B. Subgroups of 0(2m,2m) 

To import the complex structure in 9P2,,, into the general linear group, we simply double 
the dimension to 9?z,,,2m using a complementing bivector K which commutes with J. This can 
be done by introducing a basis {ei,cJi,f J satisfying 

ei.ej=~..e,=sij=-fi.fj3-fi.fj (6.10) 

for i= 1,2 ,..., m. Then 

J= g (eig+fi.Fi), 
i=l 

K= g (eifi-&fi). 
i=l 

(6.11) 

(6.12) 

We verify that 

JxK=(JK),= 2 (fiei+ei~i:i-fiei-eifi)=O. 
i=l 

(6.13) 

The invariance group of both J and K is the complex general linear group GL( m,%’ ) . It is the 
subgroup of GL( 2m,9?) which leaves J invariant or, equivalently, the subgroup of U( 2m) 
which leaves K invariant. In other words 

GL(m,%‘)=U(2m)nGL(2m,9). (6.14) 

We can derive a basis for gl( m,% ) by applying Eq. (4.26a) and (4.26b) with K2 =A to double 
the basis for u(m) in Eqs. (6.4a)-(64c). Thus, we obtain 

Eij=epj+Zpj- ff,-T&p 

Fij=epj-~~j+f~j-~~j, 

Gij=eifi- fgj-TJj+yz’, (6.15) 

Hij=ezj+ fF’+fgj+&fj (i< j= 1,2,...,m), 

Ji=epi+ f>i, 

Ki=eifi-TJi (i= 1,2 ,..., m), 
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for a total of 4 X irn (m - 1) + 2m = 2m2 generators. Both J and K can be eliminated as before 
by replacing Ji, Ki by 

Hi=Ji-Ji+l, Gi=Ki-Ki+l (i=1,2,...,n-1). (6.16) 

The result is the Lie algebra for SL (m, 55 ) . This completes our discussion of GL( m, 55’ ) . 
We can describe the extension from g2,,, to 5?2m,2m in a different way. If we replace K in 

Eq. (6.12) by 

K,= i!l (eifii-$i)s (6.17) 

then Eq. (6.13) is replaced by 

JxK,=2K2, (6.18) 

where 

K2= *$, (fi&+eifi)* (6.19) 

Thus we have another stability group for J which leaves K, and hence K2 invariant instead of 
K. This is the full symplectic group Sp( m,%’ ). It is a subgroup of GL( 2m,.%), since the latter 
is defined by K1 invariance. In contrast to U(m), however, it is not a subgroup of O(2m); see 
Eq. (6.9). A basis for sp(m,.%‘) can be written down from the gl(m,%) basis (6.15) simply by 
noting the effect of switching the sign in replacing K by K, and replacing Ki by 

K,i=eJi+$i and Kzi=eifi+fi &- (6.20) 

Thus sp( rn,L% ) contains m more generators than gl( m,%’ ) . 
By combining the *-operator (3.24) with K1, as we did in Sec. IV, we define the operators 

gl*a =&a* = a* . K, , (6.21a) 

and 

&,a=g2a*=a* * K2. (6.21b) 

Then we have an algebra of three operators satisfying 

ig*=~&J2= -1, 

LJ,,K,*l = - 2K2e. (6.22b) 

As established in Sec. IV, the invariance group of Kr* is SO(2m). The subgroup which also 
leaves J in variant is denoted by Sk( m,g ) or So*(2m). The C2 refers to the quaterionic 
structure specified by the invariant relations (6.22a) and (6.22b). With the artifice of intro- 
ducing quaternionic units i, j, k (which could be bivectors in gp3), Sk(m,LZ ) can be regarded 
as the invariance group of the quaternion skew-Hermitian form 

(6.23) 
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This defines a mapping from 9 2m X gzrn to the quaternions. Of course, the four coefficients are 
separately group invariants. With quatemion conjugation denoted by a dagger, the skew- 
Hermitian property is expressed by 

e(a,b) = -d(b,a). (6.24) 

A basis for the Lie algebra of Sk( rn,s ) is easily constructed by doubling the u(n) basis 
(6.4a)-(6.4c) with the symmetry of the so(n,%‘) basis (4.56) and (4.57). 

C. Subgroups of O(4m) 

On doubling 9P2m to 9’4m we gain the possibility of two invariant involutory bivectors. 
Expressing this doubling by writing an orthonormal vector basis in the form {ei,gi,<,&}, one 
involutory bivector is defined by 

m 

J= C (ei&+gigi). 
i=l 

(6.25) 

Another is defined by 

J’= 2 (eig+gic). 
i=l 

(6.26) 

Their commutator is 

Jx J’= (JJ’)z= i (5 &+eigi-eigi-g 5) =Oe 
i=l 

(6.27) 

Since J and J’ commute, the group which leaves them both invariant is U (m ) o U( m ) . 
Alternatively, if we write J=JI and replace J’ by 

J2= z (ei&gig)t 
i=l 

(6.28) 

we get the quatemionic structure 

J,xJ,=W,, (6.29) 

where 

J3= 5 (f?igi+&q)* 
i=l 

The invariance group of this structure is U (m, 9 ), [also denoted by HU (m ), USp (m ), or 
Sp(m) in the literature]. It can be described as the invariance group of the Hermitian sym- 
metric quatemion-valued bilinear form 

e(a,b)=(a*b)+i(aAb)*Jl+j(aAb)*J2+k(aAb)*J3. (6.31) 

The Hermitian symmetry is, of course, expressed by e(a,b) =et( b,a). A basis for the Lie 
algebra u(m,9 ) can be constructed by double application of Eqs. (4.26a) and (4.26b), with 
the result 

J. Math. Phys., Vol. 34, No. 8, August 1993 



3666 Doran et aL: Lie groups as spin groups 

(6.32) 

Hij=eigj-gej-&gj+giZj (i< j=1,2,...,m), 

Fi=ei&-gigi, Gi=eigi-&&ei, Hi=eigi-cgi (i= 1,2,...,m) 

for a total of 4 X irn (m - 1) + 3m = 2m2 + m generators. 

D. Subgroups of 0(4m,4m) 

The doubling of 94m to .c%‘~,,,~,,, produces new groups analogous to those in 992,,,2m, but, 
of course, with quatemionic instead of complex structure. The analysis is similar to the pre- 
vious case, so our discussion will be limited to describing the group invariants. 

The general linear group with quatemionic structure GL( m,9 ) is the invariance group of 
bivectors K, J, , J2, J3 satisfying 

and 

KX Ji=O, J1 x J2=2Js, (6.33) 

g2=j, Jf= -J. (6.34) 

This bivector algebra has an m-dimensional representation in 9?&,,4m. The special linear group 
SL( rn,g ) zSu*( 2m) is obtained by eliminating the Abelian subgroup generated by K from 
GL(m,9’). 

We now turn to the other new group structure obtained from doubling %‘4m. It differs from 
GL( m,9 ) in the way that the quaternionic structure on the complementary spaces g4,,, and 
g4,,, are linked by group elements. The complex skew norm in 2m-dimensional complex space 
is represented in s4,,, by 

with 

e(a,b)=(aAb)*Jl+i(aAb)*J2, (6.35) 

J,xJ2=2J3. (6.36) 

To obtain its complete invariance group Sp( m,%‘), we must double to 9’4m,4m and find it as a 
subgroup of GL (2m, % ), just like we did to get the real symplectic group Sp (m,B ) for a single 
involutory bivector. 

The quatemionic structure (6.36) can be preserved while the group structure generated by 
J,, J2, J3 is broken by composing the *-operator (3.24) with J, and J2 to get 

&a =_Jla*, &a =_J2a*. (6.37) 

From Fqs. (6.35) and (6.36) we get the operator relations 

J&=_J”,=_1, J;= -1, (6.38a) 

u1* ,-J2* 1 = [Jl J2 I= &!3 - (6.38b) 
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TABLE I. The eight types of bilinear form and their groups. 

Type Form Base space Group 

S-symmetric 
S-skew 
%-symmetric 
V-skew 
%‘-Hermitian symmetric 
(&-Hermitian skew 
9-Hermitian symmetric 

.S’-Hermitian skew 

e(a,b) =e(b,a) =a * b 
e(a,b) = -e( b,a) =a ._Jb 

E(a,b)=E(b,a)=a.b+i(a.~*b) 
E(a,b)=-E(b,a)=a._J,b+i(a.J,b) 

~(a,b)=et(b,a)=a~b+i(a~_J) 
e(a,b)=-d(b,a)=a.Jb+i(a.b) 

E(a,b)=E+(b,a)=a.b+(a._J,b)i+(a._J,b)j 
+ (a*J,b)k 

E(u,b)=-~t(b,a)=a._J+(a.b)i+(a.K,,b)j 
+(a.&*b)k 

9’” 
cpl,2n 
fJ+vv 

g4n.4n 

szn 
.%Jzn 
.%4n 

94”,4” 

SO(n) 
SPh.m 
SO(n,%) 
SPhce) 

U(n) 
U(n) 

UC&-Q) 

Sk(n,s) 

Sp( m,% ) is the invariance group of these relations. Note the similarity of these relations with 
Eqs. (6.21a) and (6.21b), where the * operator was used to generate quatemionic structure 
from the Ki. 

This completes our characterization of the major “classical groups.” It includes all real 
forms of Cartan’s series of complexified semisimple groups: A,- i = SL( n,%’ ), B, =SO (2n 
+ l,%), C,,rSp( n,%’ ), D,zSO( 2n,% ). The exceptional semisimple groups are also sub- 
groups of Spin(n,n), but their invariants are not just pseudoscalars and/or bivectors.16 How- 
ever, that topic deserves a separate article. The classical classification of groups according to 
bilinear forms is given in Table I to summarize the results of this section. These groups are all 
subgroups of the general linear groups, which are, in turn, are subgroups of O(n,n), as sum- 
marized in Table II. 

VII. PROJECTIVE SPLITS AND OTHER FACTORS 

The classical groups which we have discussed so far are all subgroups of GL( n,9 ) which, 
in turn, is a subgroup of the mother group 0( n,n). But there is more to the mother group than 
that. In fact, the mother algebra 9,,n embraces all of projective geometry and its group 
structure. The essential ideas and techniques to explicate this projective structure are laid out 
in Ref. 3, so we remark here only on how the present perspective generalizes and, perhaps, 
perfects the approach there. 

Reference 3 explains the geometric meaning of two kinds of multiplicative splits (or 
factorizations) of geometric algebra. The first kind, a split with respect to a vector, was called 
a “projective split” there. For the Euclidean and anti-Euclidean algebras .%‘,, and g,,, the 
projective split can be described as the decomposition 

9 n+l=BnG9~, ~n+,=9na9,, 

where e means that vectors in the generating vector spaces of the factored algebras mutually 
anticommute. As explained in Ref. 3, the group structure associated with these factorizations 

TABLE II. The general linear groups as subgroups of O(n,n). 

Group 

O(n,n) 
GL(n,d)CO(n,n) 
GL(m,Ce) CGL(2m,9) 
GL(m,~)CGL(4m,d) 

Invariants 

a.b 
K 
K*J 
K,J,,Jz,J, 
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is the “metric affine group.” This group extends the orthogonal group to include translations. 
To get the full affine group, we need to generalize the orthogonal group to the general linear 
group, and we now know that the way to do this is to extend L%?,, to 

9?‘,,,=9’,&37’,. 

This entails a generalization of Eq. (7.1) to 

(7.2) 

9 n+l,n+l=%,n@%,l, (7.3) 

where the elements of 9i,t now commute with the elements of .%‘,,+. The split (7.3) was called 
a “conformal split” in Ref. 3, because its invariance group is the conformal group on 9V’, but 
now we see it as a generalized projective split. In recognition of this synthesis, we propose, 
henceforth, to refer to Eq. (7.3) as a projective split, discarding the term “conformal split.” 
Since the affine group is a subgroup of the conformal group which preserves the split 

- -- %,1=% egp,, (7.4) 

it would be appropriate to call Eq. (7.1) an afine split. 
A projective split is determined by a single two-blade K, with positive signature, say Ki = 1. 

The “factor algebra” 9 i,, is generated by all vectors which anticommute with K1 . To describe 
the projective split of L%‘~+ in more detail, we adopt an orthonormal basis {ei,~i} with “com- 
plementary” blades Ki=ei q. TO split L%‘,,~ with respect to K1, we define a new basis 

e;=ezKl,ej=e3K1 ,..., eA=e,Jl. (7.5) 

Since these basis elements anticommute and have unit square, we can regard them as vectors 
generating a Euclidean algebra %‘,,-i which commutes with gt,t. The complementary vectors 
6 = eKi generate the corresponding anti-Euclidean algebra .5?,,- i. Thus we obtain an explicit 
projective split of 5Pn,i. 

This process can, of course, be repeated to express .!+Vn,” as an n-fold product of commuting 
%‘,,i algebras. Also, similar splits can be made with respect to two-blades with negative sig- 
nature. We cannot analyze, here, the rich group structure associated with the various splits. 
Our aim is only to call attention to the possibilities. 
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