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1. Introduction

The existenceof the Poincarégroup as a local symmetrygroup for spacetimehasbeenenorm-
ouslyimportantto particlephysicistsin helping themto sortout their ideasandto construct
formalismsfor describingexperimentalfacts— formalismsthat run the gamutfrom pure pheno-
menologythroughdispersiontheoryto axiomaticfield theory.In fact, studentsaretaughtnow-
adaysthatelementaryparticlessimplyare certainrepresentationsof the Poincarégroup.

An addictionof anykind ultimately extractsapenalty from the addict.Physicistslearnedthis
lessonwell in the earlydecadesof this century.Most of usareawarethat quantumfield theory



298 B.S.DeWitt, Quantumfield theoryin curvedspacetime

cannotin the endbe basedon thePoincar~group.What is neededis atheory — or at leasta frame-
work — that respectsthe full generalcovarianceof Einstein’sview of spacetimeas aRiemannian
manifold.

It is not my purposehereto presentsucha theory; it doesnot yet exist,at leastas a coherent
discipline.What I shalldo is describeseveraldistinct but relatedexamplesof physicalprocesses
that involve the manifoldstructureof spacetimein an essentialway andthat showsomeof the
importantelementsthatmustgo into suchatheory.Theseexamplesarechosenboth for their pe-
dagogicalvalueandfor their currentinterest,andI hopethat theywill convincethe readernot on-
ly thatacoherenttheorycanultimately be built but that it will alsobe extremelybeautiful.

The coreof anytheoryof interactingfields is thesetof currentsthatdescribethe interaction.
The currentsof generalrelativity theoryarethe componentsof the stresstensor.A fundamental
task— I might evensaythe main problem— in developinga quantumfield theory in curvespace-
time is to understandthe stresstensor.The stresstensor,like anycurrent,is formally a bilinear
productof operator-valueddistributions(the field operators)and henceis meaningless.The pro-
blem is to give it meaning,by somesubtractionprocess.

A subtraction,or regularization,procedureconventionallymakesuseof the vacuumstate.Par-
ticle physicistsknow what the vacuumis: It is (modulosymmetry-breakingdegeneracies)thetri-
vial representationof the Poincarégroup.Generalrelativistsarenot so lucky. In the absenceof
geometricalsymmetriestheyhavemany “vacua” to choosefrom.

1.1. Basisfunctions, vacuumstates,andBogoliubovtransformations

Let ~pbe a linearfree field propagatingin curvedspacetime.~ maybe eithera bosonor fermion
field. We suppressanyindicesit maybearandassume,without loss of generality.,that it is real
(Hermitian).(Any complexfield canbe split into its real andimaginaryparts.)Its dynamicalequa-
tionswill havethe form

Fp=O (1)

whereF is a seif-adjoint differentialoperatorin thesensethat

f~(I(Fs1,2)d4x~f(FlJIi)*~JI2d
4x, (2)

theintegralsbeingtakenover the (open)regionof spacetimeof interestandi~’
1 and~i2 beingany

two smoothcomplexfunctionshaving compactsupportin thatregion.The actionfunctionalfor
the field, which, undervariation,yields equations(1),may be expressedin the form

(3)

which I shall sometimeswrite moresimply as

S~soF~p, (4)

a furthersuppressionof indices,namelythe spacetimecoordinatelabelsx~,andasummation-
integrationconventionfor the unwritten indicesbeingunderstood.

BecauseF is self-adjointtherealwaysexistsa two-edgedvectordifferentialoperatorf’
2related
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to F in the following way:

~ (5)

where~7is anycompactregionof spacetimewith smoothboundary~2, vii’ ,&~areanytwo
smoothcomplexfunctionsdefinedoveran openregioncontaining~2,andd is the outwarddi-
rectedsurfaceelementof a~.Let u1 andu2 be anytwo complexsolutionsof the field equations
(1) andlet ~ be anycompleteCauchyhypersurfacefor theseequations.(We assumethe region of
spacetimeofinterestto be such that thereare completeCauchyhypersurfacesfor it.) Thenthe
operatorf’~maybe usedto definean innerproductfor u1 andu2, which is invariantundersmooth
deformationsanddisplacementsof ~:

(u1,u2)=—i fu~f’~u2d~, . (6)

This innerproductwill not be positivedefinite forbosonfields.
The gamenow is to introduceacomplete(modulo gaugetransformations,if any)setof conju-

gatepairsof solutionsu, u~of equations(1) satisfyingthe following orthonormalityconditions*

(U1, U1) =

6~j, (u, u,) = 0 . (7)

Therewill be an infinity of suchsets.Chooseone.Expandthe field in the form~

(8)

By usingthe canonical(anti)commutationrelations,or, in a moreelegantandmanifestlycovariant
way, by usingthe Peierls [40] definition of the (anti)commutator,it is theneasyto show thatthe
operatorcoefficientsin the expansionsatisfy the(anti)commutationrelations

[a
1,a]+ =6,,, [a1,a1]+=0. (9)

This operatoralgebraservesin the traditional fashionto definea Fock spaceanda “vacuum”
state:

a,jvac)=0. (10)

Note that the curvature of spacetimedoesnot interferein anyway with the aboveconstruction.
Therefore we may proceed immediately to the (formal) computation of matrix elements of the
stresstensor.The stresstensoris definedby functionaldifferentiationof the actionwith respect
to the metric tensorgyp:

~ (11)
6g,~ 6g~

Someof thelabelsfor which theindicesi, / standmaybecontinuous.Thesymbol61/ is understoodto includea 6-functionfor
eachsuchlabel.

** . . . . . .
Theastensk,appliedto anoperator,denotesthe Hermitianconjugate,to ac-numberor matrixof c-numbers,theordinarycom-
plex conjugate.Thedaggerwill beappliedonly to matrices,havingeitherc-numbersor operatorsaselements,andwill indicate
that a transpositionof thematrix is to beeffectedin addition to complex (Hermitian)conjugationof its elements(cf. eq. (15)).
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Actually this form is a tensordensity,i.e., it includesthe factorg112 whereg —det(~g~~),and I
shallalwaysleavethis factor in.

The simplestmatrix elementis the “vacuum” expectationvalue,which is immediatelyseento
be givenby°

(T~)vac = ~3T~(u
1, u). (12)

Theonly difficulty with this expressionis that the sumdiverges.The naiveway out of thediffi-
culty is to throw the divergenceawayandto “regularize”T’~via

Tr~ TI
1V_ (T~’°)vac‘ (13)

with thesubtractionbeing understoodto be carriedout modeby mode.This is equivalentto nor-
mal orderingthe bilinear form T~(~p,p) relativeto thedecomposition(8).The trouble,of course,
is that a differentdecompositionleadsto adifferent,andgenerallyinequivalent,normal ordering.
For if IZ, arethe basisfunctionsof an alternativeset theywill be relatedto the u by

ii, = ~ (a,,u
1 + 13,,u’), (14)

wherethe coefficientsa,,, f3,, satisfythe matrix relation(indicessuppressed)

(a 13\ (at ±13\(l O~ (15)

~~I3* *) ~±13t a~) \0 li

the +(—) sign beingtakenfor fermion(boson)fields andthe tilde denotingmatrix transportation.
If the$

3~vanishthe “vacuum” is left unchanged,but if the f3~,,do not vanishwehaveaBogoliubov
transformation

= ~ (ac.a, ±i3~~aJ), (16)

with

<~i~i)vac = . (17)

Thatis, the old “vacuum” containsnew “particles.” It mayevencontainan infinite numberof new

“particles”, in which casethe two Fock spacescannotbe relatedby a unitary transformation.
1.2. Killing vectorsandpositive-frequencyfunctions

The alert readerwill now objectthat an importantcriterionhasbeenignoredin the abovedis-
cussion.One mustusebasisfunctionsthat distinguishthepositivefrequencysolutionsfrom the
negativefrequencyones.Sucha distinctioncanbemadeonly if the conceptsof positiveandneg-
ative frequencyhavemeaningin the spacetimeunderconsideration.For thesenotionsto have
meaningthe geometrymustbe stationary,or, in fancierlanguage,spacetimemustpossessa global

Herea symmetrizedform for T~is alwaysunderstood,so that T1~’(u
1,u2) = T~°~(u2,u1).
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timelike Killing vectorfield. It maynot admit the Poincarégroup,but it mustadmit at least aone-
parametergroup of timelike motions.

GaryGibbons[281hasgiven the following completelycovariantaccountof the situationthat
existswhenthereis a Killing vectorKM. First of all, thequantity

— J’KMT~’~d~V, (18)

is conserved,i.e., is independentof the Cauchyhypersurface~. Secondly,althoughit is an ill de-
fined operator,K possesseswell definedcommutationrelationswith the componentsof the field:

[~, K] = ~
2K’,~ (modulogaugetransformations,if any), (19)

where2 denotesthe Lie derivative.Becausethe Lie algebraof a singleKilling vectoris Abelian,
thegroup that it generatesis obtainableby simpleexponential,andonemaychoosebasicfunc-
tions u that satisfy

E~U~~i~
1U1, 2~U1=ig~u,”, (20)

wherethei~,areconstants.If K~is globally timelike onemayintroducea coordinatet uponwhich
themetric doesnot dependandwith respectto which KM takesthe form (KM) = (1, 0, 0, 0). Fur-
thermore,KM maybe scaledsothat t givesdirectly the propertimemeasuredby at leastoneclock
(e.g.,aclock at infinity in an asymptoticallyflat spacetime)whose4-velocityalwaysremainspar-
allel to K’s. In that casethe functionsu1 maybe chosenin sucha way that the constantsic, areall
positive,ands<, is called the energy,relative to thatclock,of a singleparticlein ith mode.From
now on I shallusethe symbole~in placeof ~‘c,to referto the single-particleenergy,andequations
(20) will takethe form

au1/at= —ie,u1, au~/at= ie1u~. (21)

The u’s andu~‘s arethe positiveandnegativefrequencysolutions,or positiveandnegativeenergy
solutions,respectively.

In termsof thesebasisfunctionsandtheir associatedoperatorsa, a~,onecannow defineava-
cuumthat is a vacuum.OnecanmaketheoperatorK well definedby normal orderingit. I shall
denotethe resultsby the symbolE for energy:

E~_fKM:TM~):d~V. (22)

Thevacuumwill thenbe the zeroreferencepoint for energy,

Elvac)0, (23)

alld thea~, a will be energy-raisingandlowering operators:

[a1,E]_ e1a1. (24)

If thereis anotherKilling vectorLM that commuteswith KM the basisfunctionsmaybe chosen

soas to satisfyalso2L u• = —iX,u
1 , (25)
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wherethe X• areconstants.Thea , a~then. become also raising and lowering operators for theas-
sociatedconservedquantity:

[a,,L]_ =X1a,, (26)

Lia_fLM:TMP:d~V. (27)

More generally,if thereis a set of independent Killing vectors generating a Lie algebra,the u1 may
be selected to yield irreducible representations of that algebra.

1.3. Failure of conventionalprocedures

All this is just as in conventionalparticlephysics.The only troublewith it is: it’s wrong. It is
not wrongin atechnicalmathematicalsense.It simply providesa grosslyinadequatefoundation
for the theory.Herearejust someof the situationsin which it fails:

1. Theremaybe no Killing vectorat all, timelike or spacelike.This is the genericsituation.How
to dealwith it is unkown,exceptpossiblywhenthereis an approximateKilling vectorthatbecomes
exactasymptotically.It seemsmostunlikely that the particlepicturewill proveusefulhere,excçpt
approximately,in regionswherequasi-adiabaticconditionshold (which, of course,arevery impor-
tantandtypical regionsin practice!).

2. Theremaybe aglobal Killing vector,but it may not be everywheretimelike. In this casetwo
optionsareavailable: (a) Onemay excisethe non-timelikeregion from spacetime.Thiscorresponds
to the tacit impositionof aboundarycondition. (b) Onemayretain the non-timelikeregionbut at-
tempt to definea meaningfulvacuumby invoking strongphysicalarguments.I shallgive examples
of bothprocedures.

3. Spacetimemaybe stationaryonly in limited regions.If eachregionpossessescompleteCauchy
hypersurfacesthena local timelike Killing vectorfield maybe setup in eachanda vacuumdefined
for each.Supposetherearetwo suchregions,causallyconnected.I shall call the earlier region the
“in” regionandthe laterregion the “out” regionanddenotetheir respectivevacuaby in, vac)and
out, vac).The questionnow arises:With respectto thebasisfunctionsof which regionshouldthe
stresstensorbe normalordered?(Note that the basisfunctionsoncehavingbeendefinedin each
region,canbe propagatedthroughoutspacetime,althoughthey will be purepositiveor negative
frequencyfunctionsonly in their original domains.)Surelythe answer,by the principle of relativ-
ely or democracy,or whatever,is neither. Neitherregionshouldbe given preference.Moreover,it
is not possibleto define thestresstensorso that (a) it is normalorderedin both regions,(b) its
matrix elementsaresmoothfunctions,and (c) it satisfiesthe divergenceequation

(28)

everywhere.Let us thereforeagreehereandnow that thestresstensoris alwaysto be left in its un-
normal-orderedform andthat we shallonly try to regularizeit by asubtractionprocessthat re-
spectsequation(28). In thepresentcase,for example,we could do the following. Supposethere
areno particlespresentin the “in” region.Thenthe statevectorof the systemis (in, vac).We can
proceedto definethe following tensor:

(in, vac(TMZ’jin, vac) — (out, vaclTMvlout, vac) . (29)
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(Here a mode-by-mode subtraction is again implied and a well-defined prescription for effecting
it can be given.) This tensor describes the distribution and flow of energy of the particles in the
“out” region thathavebeenproducedby thenonstationarygeometrythat liesbetweenthe two
regions.

Thelast exampleillustratesvery well the failure of the naiveapproach,but it alsoshowsthat
noneof the suggestedprocedurescomescloseto dealingwith the really deepissuesof the theory.
Considerthe tensor(29). Although it describesthe physicalsituationin the “out” region it cer-
tainly doesno suchthingin the “in” region,for it fails to vanishtherealthoughno particlesare
present.In the “in” region it is equalto the negativeof the tensorthat describesthedistribution
andflow of energyof the particlesthatwould havehadto exist in the “in” region in orderthat
the “out” regionwind up particle-free.Surely thistensorcannotberegardedas the sourceof the
gravitationalfield. Evenin the “out” region it cannotbe regardedas the truesource,for it only
describesthe real particlesand saysnothingaboutthecontributionfrom virtual particles.Surely
therewill be effectsproducedby curvatureanalogousto thevacuumpolarizationeffectsof quan-
tum electrodynamics.

How thencanwe find the true source?What tensor,formallysatisfyingeq. (28), canwe sub-
tract from TM~’to yield an operatorthat is mathematicallywell definedandat the sametime
describesbothdispersiveandreactiveeffectsof the interactionbetweencurvatureandfield? I
shall indicatein the final sectionof this papersomeof the proposalsthathavebeenmade,but
first I wish to describea numberof concretephysicalexamples.Thereis nothingbetterthana
concreteexampleto helpusgeta feel for whetherwe are doing the right things.

2. The Casimireffect

2.1. A problemin vacuumenergy

Thiswell knowneffect,predictedandpopularizedby Casimir [10] andexperimentallyconfirm-
ed in the Philipslaboratories,hasat first sightnothing to do with curvature:

Two extremelyclean,neutral,parallel,microflat conductingsurfaces,in avacuumenvironment,
attractoneanotherby avery weakforce thatvaries inverselyas the fourthpowerof thedis-
tancebetweenthem.

However,justas curvaturecanbe regardedas a clutteringup of spacetimewith bumps,socanthe
Casimirapparatusbe regardedas acluttering-upof spacetimewith neutralconductors.Although
the effect was first computedas akind of Van derWaals force,becausethe force turnsout to be
independentof the moleculardetailsof the conduc’~-’rsCasimirquickly recognizedthat it could
be computedas a problemin vacuumenergy,andthat is the way it is computedin the classroom
today.It is true that the tiny energyinvolved is too smallby manyordersof magnitudeto pro-
duceagravitationalfield thatanybodyis going to detect,but onecaneasilyconstructGedanken-
experimentein which the law of conservationof energyis violatedunlessthis energyis included
in the sourceof the gravitationalfield. Relativistsshouldnotethat the energydensityinvolved
is negative,andhencethe stresstensorviolatesthe classicalenergytheoremssocrucial to black-
holetheory*. Everybodyshouldnotethat theCasimirenergyis a purevacuumenergy;no real
* Thenegativityof theenergyappearsto bea function of conductorgeometry.Boyer [41andDavies 117] haveshownthat the

vacuumenergyinside a conductingsphereis positive.
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particlesare involved, only virtual ones.And experimentstell us that we have to take it serious-
ly.

As far as I am awarethe first personto calculatethe actualenergydensity(i.e., theT°°compo-
nentof the stresstensor),as opposedto the total energybetweenthe conductors,was Larry Ford
[23]. Ford’smethodcanbe appliedto the computationof theother componentsof the stress
tensoras well, and I wish to describethe very beautiful results.Butbefore I do,it will be instruc-
tive to reviewwhatthe formal situationis for thevacuumexpectationvalueof the un-normal-
orderedstresstensorin ordinaryunclutteredMinkowski space.

2.2. Regularizingthestresstensor

The field involved in the presentproblem,is, of course,the electromagneticfield. The simplest
basisfunctionsu, to introducearerunningplanewaveswith linear polarization.The sum(12) for
thesewavesdivergessowe haveto regularizeit. A usefulway from thepoint of view of axiomatic
field theory,as well as heuristically,is to insert into the formal expressionfor TM0 not the field
operatorsthemselvesbut operatorsthat havebeensmearedout by meansof a smoothfunction
s(x)of compactsupport:

p
5(x) fs(x — y) p(y) d

4y (Minkowski coordinates). (30)

The resultingoperatoris well definedandthe behaviorof its (finite) vacuumexpectationvalue
maybe studiedas the size of the supportof s(x) tendsto zero.The procedurecanalsobe applied
in curvedspacetime,but in that casethe regularizedTML) will not generallysatisfythe divergence
condition (28) exceptin the limit. In the presentcaseeq. (28) is trivially satisfiedbecauseof the
homogeneityof Minkowski space.

I wish to underscorethe fact that this methodof regularizationis framedependent.s cannot
be a Lorentzinvariant functionof the interval (x — y) andhavecompactsupportat the sametime.
To my mindthis enhancesits value. So-calledcovariantregularizationschemeshaveas their only
goal the technicaleliminationof the ambiguouspartsof TM0 andaretoo ad hoc to haveanypar-
ticular physicalmeaning.*A frame-dependentmethodis usefulin that it emphasizeswhat is
wrong with TM0 andat thesametime allowsoneto achieveakind of down-to-earthor heuristic
physicalinsight into the structureof thevacuumenergy.Heuristic insightsarealwayshelpful
whenmoving into new territory, andI shallemphasizeframedependenceagainlater.

A regularizationmethodequivalentto the smearingmethodbut easierto apply in practiceis
simply to separatethe pointsat which the two p’s in TM0 aretakenandthento examinethe
tensorasthepointsarebrought togetheragain.This methodis obviously framedependentbe-
causethe separationinterval introducesa preferreddirection.I shall choosea timelike separation
interval,parallelto the t (orx°)axis.This is easilyseento be equivalentto introducingan oscil-
lating factor of the form exp(ie

1/A) into the summandof equation(12), A beingthe reciprocal
of the lengthof the separationinterval.A is in effect a high-energycutoff, andthe methodis
identicalto the standardprocedurefor computingthe Casimirenergy.

* A once-popularcovariantargumentfor disposingof (TMP)vacrunsasfollows: (TMV)vac mustbea field-and-frame-independent

objectthat transformsasa tensorunderLorentztransformations.Theonly suchobjectsaremultiplesof the Minkowski metric
~ Themultiplicative factormustvanishin thepresentcasebecausetheMaxwell stresstensoris traceless.ThereforetTMV)Vac =

0 evenbeforenormal ordering!Clearly theideaof the electromagneticfield asa collectionof harmonicoscillatorshasbeento-
tally abandonedhere.
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The sum(12), with the oscillatingfactor inserted,is easilyevaluated.Onefinds

1000

(TMP)vac ~ . (31)
ii.2 oo~o

o00~

Thishasexactlythe sameform as the stresstensorof aphotongasat rest(zerototal 3-momentum)
in the chosenframe.

Now introducethe parallelconductorsandrepeattheprocedure.The useof a preferredframe
is naturalin this casebecausetheconductorsthemselvesprovideit. (See,however,below.)The on-
ly differencefrom the precedingcalculationis that the basisfunctionsu• aredifferent. Onemayas-
sumetheconductorsto be infinite planes.The u1 maythenbetakento havethe form of running
wavesparallel to the planesand standingwavesin the perpendiculardirection.The only tricky part
is that onemustbe sureto imposethe boundaryconditionsappropriateto electricandmagnetic
fields outsideof perfectconductorsandnot to overlook anyof the modes.The vacuumbetween
theplatesis no longer the vacuumof unclutteredMinkowski space,becausethe functionsu, are
different.The right handsideof equation(12) reducesfrom a three-dimensionalintegral(plus the
polarizationsums)to a two-dimensionalintegral andadiscreteinfinite sum.The result is found to
be (for largeA)

1000 —1000

3A
4 0!00 ir2 0100

(TMP)vac + , (32)
~2 oo~o 720a4 0010

0 0 0 0 0 0—3

wherea is the distancebetweentheconductingsurfacesandthex3 direction is takenperpendicu-
lar to the surfaces.I shouldremarkherethat I amusingunits for which h = c = 1 anda metric of
positivesignature:(flMv) = diag (— 1, 1, 1, 1).

2.3. Propertiesof the Casimirstresstensor

Expression(32) hasseveralremarkableproperties:
1. The cutoff-dependentpart of it is identicalwith expression(31) for theunclutteredvacuum.

This part maythereforebe identified,atleast tentatively,as an irreduciblecorethat will be found
in all matrix elementsof the stresstensorunderall conditions.Indeed,we shall laterfind this part
poppingup in exactlythe sameform evenwhencurvatureis present.[Seeeq. (249).] Being uni-
versalit maybe thrown away,leaving, in the presentcase,a finite remainder.An evenbetterrea-
son for throwing it away in the presentcaseis that the finite part,andonly the finite part, is what
is observedin the laboratory.

2. The finite remainderis not merely cutoff-independentbut also frameindependent.To be
sure,the conductorsthemselvesdeterminea preferredx3 axis,but theyleavethex°,xi andx2
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axes entirely arbitrary. The finite part of.(TMV)yacremainsunchangedunderboostsofarbitrary
magnitudein arbitrary directionsparallel to the (x’, x2) plane. Physicallythis meansthataperfect
plane conductor remains a perfect plane conductor in anystateof motion parallelto its surface,
and that thevacuumstressesin the vicinity of suchaconductorlook the sameno matterhow
rapidly we areskimming overits surface,a resultthatwould surelyhavepleasedEinstein.

3. Boththe finite anddivergentpartsof (TM~))vac satisfy the trace condition T~= 0.
4. Boththe finite anddivergentpartsareposition-independent,i.e., constantanduniform. This

propertyis not a priori necessaryfor the finite part andwasa bit of a surprisewhenfirst discover-
ed. Invarianceof the physicalset-upunderdisplacementsin thex°,x’, andx2 directionsguaran-
tees,of course,that (TMV)vac will not dependon thesecoordinates,but it could still dependon x3.
As amatterof fact, the quantities(E2)vac and(H2)yac, whereEandH arethe electricandmagne-
tic field vectors,do have,by themselves,anx3-dependence,which, closeto eachconductor,takes
the form*

-

~.2 167r2z4

(33)
3A4 3

(H2)vac = + 16ir2z4

z being thedistancefrom theconductor.It is only whenEandH areput into the combinationsin
which theyappearin the stresstensorthat the x3 -dependencedisappears.Incidentally,this does
not meanthat the x3-dependenceis unobservable.In principle it will leadto (very) smallx3-de-
pendentshifts in the energylevelsof an atomneara conductor(over and abovethe shiftsdueto
the atom’simagein the conductor!).But it will leaveno imprint upon the gravitationalfield.

5. The relativemagnitudesof the (0, 0) and (3,3) componentsof the finite part of(TMl~)~
5~,

andthe form of their dependenceon a, arejust whattheywould haveto be if the vacuumwerea
gasconfinedin the spacebetweenthe conductors,agas,to be sure,with bizarreproperties— ne-
gative energydensity,negativepressure(tension)in thex

3 direction,positivepressurein the x1
andx2 directions— but a gasthat satisfiesthe termodynamicallaw

dETdS—pdV, (34)

nevertheless.Thus,if oneslowly (dS = 0) pulls the conductorsapartthework doneagainstthe
tensionshowsup exactlyas an increasein the vacuumenergy.Maxwell would havebeenpleased
with this result. It almostmakesonebelievein the ether!

If I hadbeencleverer(or if I hadbelievedin theether) I would haveanticipatedall thesepro-
pertiesin advance,andthen I would haveknown what form (TMV)vac musthavebeforeI eversat
down to computeit. Symmetryconsiderationsassurethat the finite part of (TMV)vac mustbe dia-
gonal,with (1, 1) and(2, 2) componentsbeingequal.Property2 requiresthat the (0,0) and
(1, 1) componentsbe equalin magnitudebut oppositein sign.Property3 thenyields the relative
magnitudeof the (3, 3) component,and,togetherwith thedivergencecondition(28), implies
property4. Thea-dependencefinally folkws from property 5. The a-dependencecanalsobe ob-
tainedfrom dimensionalarguments,providedonehasheardof Planck’sconstant,because11 andC

* In rationalizedunits.
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arethe only physicalconstantsinvolved. The only thing left undeterminedis theabsolutemagni-
tude,andsign,of anyoneof the nonvanishingcomponents.This mustbe foundby computation
(orexperiment).

One final remark: The vanishingof the finite part of (TMP)~
5~as a -~ °° suggeststhat (TMV)vac re-

ducesto expression(31) in the infinite halfspaceon eithersideof a singleplaneconductor.This
may,in fact, beverified directly by carryingout the sum(12) with basisfunctionsappropriateto
suchahalf-space.Becausethesebasisfunctionsdiffer from thoseof emptyMinkowski space,the
half-spacevacuumis still not identicalto theunclutteredvacuum.Equations(33), forexample,
continueto hold.

2.4. TheCasimireffectas a problemin manifoldstructure. The masslessscalarfield

The methodof computationin the aboveexamples,in which we simply pick a setof basisfunc-
tionsappropriateto the desiredboundaryconditions,underscoresthe fact that eventhe Casimir
effect is very mucha problemof Riemannianmanifoldstructure.In eachcasewe pick a different
Riemannianmanifold — aslab,ahalf-space,or Minkowski space— andthepropertiesof theva-
cuumdependon ourchoice.Thispromptsus to askwhetherthe propertieswe havefounddepend
primarily on the manifold or arepeculiarto the electromagneticfield. To answerthis questionin
generalwould requirethe openingup of awhole new line of research.I canonly reporthereon
what I havefound in the caseof oneotherfield, the masslessscalarfield.

Whatboundaryconditionsshouldoneimposeat the edgesof a slab-manifoldin the caseof a
scalarfield? Settingthe field equalto zero therewould seemto be a naturalprocedure.Andyet
this leavesonewith an uneasyfeeling.What is the analogof a conductorin the caseof ascalar
field? In electromagnetictheorywe know what a conductoris, bothfrom yearsof experiment
andyearsof modelbuilding. We do not hesitateto imposethe standardboundaryconditionsfor
the electricandmagneticfields,becausewe know that the theory is consistenton manylevels.
Indeed,Boyer[5], in his studyof theCasimireffect, hassuggestedthat the electromagneticfield
is unique— that thereis no calculableanalogof the Casimireffect for fields of otherspin. Well,
what arethe facts?

To cut a short storyevenshorter(the calculationis easy)the facts are these:The vacuumex-
pectationvalueof TMV inside aslab,with the field requiredto vanishon theboundary,hasthe
form

1000 —1000 —1000

3A
4 0 0 0 ~2 0 1 0 0 ~.2 3—2 sin2 (7rz/a) 0 1 0 0

(TMV) + +vac 2ir2 0 0 .~ 0 1440a4 0 0 1 0 48 a2 sin4 (irz/a) 0 0 1 0

0 0 0 0 0 0—3 0 0 0 0

(35)

wherez is the distancefrom eitherboundary.Again we havethe ubiquitousframe-and-cutoff-
dependentterm,reducedby a factor2 nowbecausethereareonly half asmany modes.But in-
steadof oneframe-and-cutoff-independentterm therearetwo, quite distinct. The first isjust the
uniform Casimirstress-energy(reducedby a factor2), but the secondis a new term,havinga
dependenceon position.Both thesetermsare fmite, sowhat is wrong?
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The main thingwrong is that the last term divergeswhenintegratedacrosstheslab andsoyields
an infinite negativetotal energy(perunit area)in the slab.Boyer is right, at leastin this case.The
reasonhe is right is that it is not quite true that the scalarfield hasonly half as manymodesasthe
electromagneticfield. The electromagneticfield hassomemodes,in which the magneticfield is
constantacrossthe slab(for fixed x’ andx2), that haveno analogfor the scalarfield. Thesemodes
conspire,in the sum(12), to cancelthe z-dependentterm in the electromagneticcase.

Well, how aboutgoing backto first principles,to decidewhat the vacuumstresstensorfor the
scalarfield shouldlook like, just as we did (after the fact) for the electromagneticfield? Whatkey
point in the electromagneticargument.is missinghere?It is the fact that the conditionT~= 0 no
longerholds.Aba! Thenwe shouldusethe conformallyinvariant scalarfield, whosestresstensor
doessatisfy this condition(seeeqs.(232)and(233)). Indeedthis doesthe trick. A straightforward
calculationshowsthat for the conformallyinvariantscalarfield the last term of equation(35) is
missing.So Boyeris wrongafter all.

But.whataboutthe mode-countingargument?In the absenceof curvaturethe basisfunctions
u, arethe sameno matterwhich stresstensorwe use.Moreoverthe two tensorsdiffer from one
anotherby a gradientandhenceshouldyield the sametotal energy.But in point of fact theydon’t.
The energyintegralsdiffer by surfacetermson the boundary,andthesearewhat makethediffer-
ence.

The successof the conformallyinvariant theory in this case,andthe fact that it mimicksthe
electromagneticresultssowell, gives onea measureof confidencein usingit in moregeneralpro-
blems,andin believingthat the resultsobtainedfor suchproblemswill, whenspin dependentef-
fectsdo not dominate,agreeat leastqualitatively,andvery oftenquantitatively,with the results
for the sameproblemsusingthe electromagneticfield. Becausethe scalarfield is somucheasier
to work with I shall stick with it from now on.

3. Acceleratingconductors

3.1. Particleproductionby movingboundaries

The Casimireffect maybe calledapre-curvatureeffect of manifoldstructure.Beforegoing on
to discusstrue curvatureeffectslet me follow Einstein’sexampleby first discussingeffectscaused
by acceleration.In applying thethermodynamicallaw (34) to the CasimirvacuumstressI required
that the conductorsbe movedslowly. If I wereto acceleratethemappreciablytheywould emit
photons,andtheentropyin the slabregionwould be increased.It mayseemsurprisingat first
that by acceleratinganeutralconductoronecanproducephotons,but thenonequickly remem-
bersthat the surfacelayersof a real conductorcarrycurrents.The free electronsnearthe surface
reactto the quantumfluctuationsof the electromagneticfield just as theydo to aclassicalfield
andproducecurrentsofjust the requiredamountto guaranteethe standardboundaryconditions.
Becausethe boundaryconditionssufficeto determinethe physicsoutsidetheconductorsone
neednot referto the currents,as such,at all.

To seehow this works in practiceconsider,for simplicity, amasslessscalarfield in aflat space-
time of two dimensions.(In two dimensionsthis field is automaticallyconformallyinvariant.)
IntroduceMinkowski coordinatesx andt. Supposea conductor,or barrier, is presentandthat the
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Fig. 1. Particleproductionby a moving barrier.

world line of its surfaceis givenby a smoothfunctionz(t) with I±(t)(< 1. Let the region to the
“right” of the barrierbe uncluttered.Supposethesurface(a point, actually)remainsat restat
the origin until the time t = 0, thenproceedsto undergovariousaccelerationsuntil t = T, andre-
mainsthereafterin a stateof uniform motion. Thespacetimesituationis depictedin fig. 1.

in regionsI, II, andII’ the naturalbasisfunctionsto useare

u(t, xle) = —~—— sin (ex) e_~t, 0< e < °°. (36)

In regionsII’, III andIV the naturalbasisfunctionsare

Ti(t, xj~) u(T, ~~Ifl = 1 sin(~~)e~t (37)

where~ andTare relatedto x and t by a Lorentz transformation:

~(l —u2)”2[x—z(T)—u(t— T)] .
vz(T). (38)

T = (1 — v2 )_i/2 [t — T— v(x —z(T))]

Both setsof basisfunctionsmaybe propagatedto the remainingregions,but thentheylose their
simpleforms.The propagationis very easily effectedin two dimensions.Forexample,the first
basiswill havethe generalform
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u(t,x(e) f~(x— t) +g~(x+ t) , (39)

everywhere,andso will thesecondbasis.The functiong5 is alreadycompletelydeterminedby re-
gion I:

(40)

The functionf5, however,is determinedthere(andin regionsII andII’ aswell) only for positive
valuesof its argument.To getit for negativevaluesof its argumentoneusestheboundarycondi-
tion

0 = u(t,z(t)Ie)—f~(z(t)— t) +g~(z(t)+ t) , (41)

which yields

f~(z(t) — t) = e
1~tz(t)+tl (42)

2l~/~

Supposethesystemis initially in the vacuumstate.Thenthe stateis in, vac),satisfying

a(e)(in,vac) = 0 for all e, (43)

wherea(e)is the annihilationoperatorassociatedwith the basisfunctionu(t,xle). This is not the
vacuumstatevectorrelativeto thebasisfunctionsi~(t,x(~).The two basesarerelatedby aBogo-
liubov transformationwhich canbe determined,for eachfunctionz(t),by astraightforward(but
tedious)computationmaking usein regionsII’, III andIV, of equations(39), (40) and(42) and
the orthonormalitypropertiesof the basisfunctionsIL The propagatedbasisfunctionsu havea
distinct form in eachof the regionsII’, III andIV. RegionIII is the regionof “photon” produc-
tion. It is wherethe positiveandnegativefrequenciesget mixed. In region IV equilibrium is re-
establishedandthe new vacuumreigns;the functionsu revert to their purepositive-frequency
status,but eachnow carriestwo frequencies:the original frequencyandthe Dopplershiftedfre-
quencyobtainedby bouncingthe primarywaveoff the movingbarrier.

3.2. Constantacceleration

Thereis oneparticularacceleratedmotion that the barriercanexecutefor which astateof the
field existsthat remainsin equilibriumat all times,namely,constant(absolute)accelerationfor-
ever.Thiscase,which is convenientlystudiedin a Rindler-typecoordinatesystem[42], was first
analyzedby Fulling [24]. Let

t = e~sinh r~, x= e~cosh,~. (44)

Thenthe Minkowski line elementmaybe rewrittenin the form

ds2 e2~(—th~2+d~2), (45)

which is seento be conformallyrelatedto the standardform. Thenew coordinates,however,span
only the regionof (two dimensional)Minkowski spacefor whichx> It]. The world line of thebar-
rier will be givenby ~ = = constant.The magnitudeof its absoluteaccelerationis e~.More gener-
ally, anyobserverwhoremainsataconstantfixed ~ will havean absoluteaccelerationequalto e~.
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The reasonthat an equilibrium statefor the field canexist in this caseis that the submanifold
x> It] possessesa globally timelike Killing vectorfield parallel to the world line of the barrier,
namelythe (contravariant)vector(1, 0) in the (ri, ~)system.Thisvectorfield is not globally time-
like in the full Minkowski spacebut becomesnull on the line x = ti, ~ =

The normalizedbasisfunctionsfor this systemareidenticalin form with thosefor abarrierat
rest(eq. (36)) in virtue of the conformalinvarianceof thetheory.Theyare

u(r~,tie) = sin(eE)e~’1, 0< e< 0~ (46)

If onegivesthe barrieraninfinite acceleration,by pushingit off to the edgeof the manifold(~=

_oo), thenrunningwavesbecomeappropriate:
u(~,~ = ~ ei(1~~_~), oo <p < co, e = IpI. (47)

This is becauseabarrieratthe edgeof the manifold,movingwith the speedof light, cannever
bounceawavebackinto the manifold.As Rindler [421 hasemphasized,this propertyof the line
x = It] is analogousto thatof the eventhorizonin black-holetheory,andI shallbe usingjust such
runningwaveswhenI presentlydiscussblackholes.

Fulling [241hasgeneralizedthe basisfunctions(47) to the caseof massiveparticlesandhas
computedthe Bogoliubovtransformationcoefficientsbetweenthesefunctionsandthe standard
Minkowski plane-wavebasis.The analysisis a little morecomplicatedin the caseof a barrier
havingfinite acceleration,but in bothcasesthej3 coefficientsarenonvanishing.Thesecoefficients
(or rathertheir analogswhenthe Minkowski basisis replacedby thatappropriateto a uniformly
movingbarrier)becomephysicallysignificantunderthe following conditions:Supposetheac-
celerationof the barriersuddenlydropsto zero.Thenthe 13’s give directly thenumberof particles
produced.An analogousbut morehomelysituationis the following. Supposea finite-temperature
gasis allowedto cometo equilibrium abovea platformundergoingconstantupwardacceleration.
If the accelerationis abruptlystoppedtherewill suddenlybe alot of phononsaround.

3.3. Thevacuumstressfactor

Onemayaskthe question:Whatdoesthe vacuumstresstensorlook like abovean accelerating
platform?In the two dimensionalcasethe questionmaybe rephrased:Whatdoesthe sum(12)
give whenwe usethe functions(46)?In the caseof a barrierat restthe vacuumtensorreducesto
thatof unclutteredMinkowski space,justas in the 4-dimensionalcase.Becauseof the conformal
invarianceof the 2-dimensionaltheoryoneexpectsthe sameto be true for an acceleratedbarrier,
andit is. But herewe runinto a new problem.If we insertan oscillatingfactorof the form
exp(ic/A) into the summandof expression(12) we find, for thetensordensity,

(TMV)vac = e2~~ (~~). (48)

Thissameform holdsalsoin a local Lorentz frame,with time axisparallelto the linesof constant
~. But thismeansthat the vacuumstressvanishesas ~ -~ oo, underthe A-regularizationscheme,
somethingit doesnot do In the unacceleratedcase.The reasonfor the phenomenonis thate in
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eq. (46) hasthe significanceof alocal particleenergyonly at ~= 0. Anywhereelsethe local ener-
gy is e~ebecauseof the relationd~= e~dr betweeni~andthepropertimer at constant~. The
cutoff A thereforerefersnot to a local energybut to aDopplershiftedone. If we agreeto usea
A that varieswith positionin sucha way as to give alwaysthe samelocal cutoff energy,then
equation(48)will be replacedby

A2 1 0

(TMP)vac = ~ ~ 1)’ (49)

andthe ubiquitouszero-pointenergywill be recognizedfor what it is. Actually, in practiceit does
not matterwhich schemewe useas long as we areawareof the phenomenon.Somepeoplemight
preferexpression(48) becauseit satisfiesthe divergencecondition(28) which, in thepresentcon-
text takesthe form

+ T~+ T’~= 0. (50)

I havenot yet beenableto computesuccessfullythe form of thevacuumstresstensorabove
an acceleratingbarrierin the4-dimensionalcase.Thiscaseis not conformallyequivalentto that
of abarrierat rest,* andhencethereis no a priori reasonto rule out afinite, andhencephysically
significant,addition to the usualdivergentstress(31). The technicaldifficulty is that the basis
functionsbecomeBessel functions of a form alreadyencounteredby Fulling [24] in the two di-
mensionalmassivecase,andthereis discretequantizationin the ~direction.The reasonfor the
latteri~thatanyphoton,exceptone thatis aimedvertically “upward”, ultimately falls backto
the barrier,andhenceeveryorbit hasa turningpoint of maximum~.

Noteadded.After this paperwas written my attentionwas called to avaluablearticleby Moore
[35] on the quantumtheoryof the electromagneticfield in avariable-lengthone-dimensional
cavity. Moore studiesthe problemof two movingbarriersandgives: (a) acarefulstatementof
the mathematicalstructureof the correspondingquantumfield theory,and(b) a methodfor
finding a wide classof barriermotionsadmittingexactsolutionsof theproblem,someof which
areof considerablephysicalandconceptualinterest.

4. The Kerr black hole

4.1. Geometricalpreliminaries.Ergosphereandhorizon

Now let us look at curvedmanifolds.I shall beginwith aparticularlyexoticone,the Kerr black
hole,becauseit illustrateswell a greatnew rangeof problems.The line elementis

sin2O 2
ds2 = — —i- (dt — a sin20 dØ)2 + 2 [(r2 + a2)dØ— a dt]2 + f— dr2 + p2 dO2, (51)

p p

p ~/r2 + a2 cos2 0, ~ r2 — 2Mr + a2 , (52)

* Conformalequivalenceholds for thefield arounda singleuniformly acceleratingpoint sourcebut not for thefield aboveanen-

tire acceleratingbarrier.
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and I shall have to spend a moment taking note of some of its properties.* By examining it at r -+

one finds that it correspondsto a sourceof massM and spin angular momentumJ= Ma. When
the constant a is setequalto zeroit reducesto the Schwarzschildline element.It is believedto be
the uniquemetric that results,after gravitationalradiationhasdiedaway,whengravitatingmat-
ter undergoescatastrophiccollapsethroughan eventhorizon. It is alsobelievedthata cannever
be greaterthanM.

To locatethe eventhorizonit is helpful first to note that the metricis independentof thecoor-
dinatest and~. Hencetherearetwo independentKilling vectors(~) (1,0,0,0) and(~)

(0, 0, 0, 1). (Thecoordinatesareassumedto be numberedin theordert, r, 0, ~.) By directcom-
putationonefinds that theysatisfy

= —(1 — 2Mr/p2) , (53)

(~~)2 — = z~sin2 0. (54)

~ is evidentlyatimelike Killing vectorovermost of the manifold,and t coincidesatr -~ °° with a
standardtime coordinate.But ~ is not globally timelike. It becomesnull on the surfaceof theso-
calledergosphere,locatedat r = M + ~/M2 —a2cos20, andis spacelikebetweenthis surfaceand
anotheronelocatedat r = M — \/M2 — a2 cos2 0. Neitherof thesesurfacesmarksthe horizon. In-
sidetheoutersurface,for example,therestill exist timelike vectorsthatpoint in the direction of
increasingr. In determiningtheboundaryat which suchvectorsceaseto existit is sufficient to
determinewheretimelike vectorshavingonly t and~ componentsceaseto exist. (A smallpositive
r componentcanalwaysbe addedto such avectorwithout destroyingits timelike character.)Thus
we considercombinationsof ~ and~ of the form ~ + ~ where&2 is afunctionof r, andpossi-
bly alsoof 0. In order thatthe combinedvectorbe timelike ~2mustlie in the range~2..< &7 < ~7+,
where

= ~2(_ ~. ~ ±~J(~.~)2 — ~ ). (55)

~2is the angularvelocity that a spaceshipwould have(asseenfrom infinity) if its world line were
parallelto the vector~+ ~ The lower bound,&2_, vanisheson thesurfaceof the ergosphere
where~ = 0. Insidethis surfacethe spaceshipcannot“sit still”; i.e., it cannotremainatafixed
r, 0 and~, but is forced,by the Lense—Thirringframe-draggingeffect,to revolveabout the black
hole.Note that if ci is taken,for themoment,independentof r and0, then~ + ci~is a Killing
vector.This meansthatthe geometrystill appearsstationaryto the crew of the spaceship.

If the spaceshipreachesthe surfacewhereci+ and,~2_coincide,its coneof options(i.e.,light
cone)is narroweddown to nothing,at leastfrom thepoint of view of the t, r, 0, 0 coordinate
system,which becomessingularon this surface.Fromthenon it cannotescapebut canonly head
on into regionsof decreasingr, wherethe geometryis necessarilydynamic(notimelike Killing
vector).Thissurfaceis the horizon. Itspositionis determinedby the vanishingof the radical in
eq. (55), which, in view of eq. (54), is equivalentto the vanishingof i~.~ hastwo roots, r+, given
by

r+ M±~JM2—a2. (56)

* For further details on blackholesthereadermay wish to consulta generalreference,e.g., “Black Holes,” eds.DeWitt and

DeWitt (Gordon andBreach,New York, London, Paris,1973).
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It is the largeronethat is relevant.
A crucialquantityin what follows is the valueof ci÷andci_ whentheycoincide.This is known

as theangularvelocity of thehorizon itself, andis found,after a little algebrato begiven by

a a
(57)

2Mr~ r~+a2

Otherusefulquantitiesarethe following:

g112 p2 sin 0, (58)

a2 ir a ai2 1 ia a\2
gMV ————~(r2+a2)—+a—I+ l—+asin2O—

axMaxv ~p2 L at a~J p2 sin20 \~Ø at

~ a 1 a2
+— —+-— —. (59)

p2 8r2 p2 ao2

The operatorfM for the scalarwaveequationtakesthe form

glI2gMP ~ — gl/2gMP , (60)
8x” ax0

which, for ahypersurfacet = constantin the Kerr geometry,becomes

sin0 ([(r2+a2)~_~a2 sin0]—~--+2Mra-8-- . (61)

at

Only the regionoutsidethehorizon will be neededin the constructionandnormalizationof our
basis functions,andhencethe domainof integrationover thishypersurfaceis r.

1. < r < ~o,

0 ~ 0 ~ ir, 0 ~ 0 ~ 2ir. Becausethe curvaturescálarof the Kerrgeometryvanishes(it is a major
undertakingto verify thisby direct computation!)thereis i~odifferencebetweenthe conformal
andordinary scalarwaveequations.Nor shallwe find anypracticaldifferencebetweenthetwo
stresstensorsin the asymptoticregionr -÷ oc, which is the only regionwherewe shall attemptto
computethem.

4.2. Absoluteunits

Before going farther it should be pointed out that we are now working in units for which G =

c = 1, G being the gravity constant. Whenwe presently start quantizing I shall add the condition
h = 1. Thenwe shallhaveunitlessunits, or absoluteunits. It will be usefulto rememberthat the
absoluteunits of length, time andmassrespectivelyare 1.6 X iO~ cm,5 X l0~~secand2 X
l0~g. In theseunits themassof theprotonis 8 X 1020,the massof the sun is 1038, andthe
size,age andmassof the universeare 1062.

4.3. Basisfunctions

It is aremarkablefact that thewaveequation
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g”2 ±.glI2gM1~—~-~~-ip = 0, (62)
axM ax

is separablein the Kerr metric. The basisfunctionsmaybe takenin the form

u(l, m,plx) = N(p)(r2 + a2 ) ‘12Rim (p, air) Sim (aelcos0) eim*~e_~t, (63)

whereN is a normalizationconstantandp is a certainfunctionof e (both presentlyto be deter-
mined).Sim is a spheroidalharmonicsatisfyingthe eigenvalueequation

[~l — ~2) — m2 + 2mae — (ac)2 (1 — ~2) + Aim (ae)1Sim(‘~I~)= 0, (64)

the eigenvalueAim (ac) dependingin an unfortunatelynontrivial way on the integersl( 0, 1, 2...)
and m(= —1, —1+1 ... 1—i, 1) andon its argument ac, but having the well known boundary value
Aim (0)= 1(1+ 1). Beforewriting thedifferentialequationsatisfiedby the “radial” function it will
be convenientfirst to introducethe new coordinate

M / r—r.,. r—r...~
r*r+ (r+ln —r_ln , (65)

\ r.
1. r.. /

satisfying

dr*/dr=(r
2+a2)/~. (66)

Thisnew coordinaterangesoverthe entire real line, pushingthehorizonoff to minus infinity. In
terms of it the “radial” equation takes the simple from

r d2 1
— Vzm(e~aIr)]Rim(p,alr)0 , (67)

dr

where

/ a ~ 2 2(Mr—a2)~ 3a2&

~TIm(e, air) = — ~e— m r2 + a2) + Aim (ac) (r2 + a2 )2 + (r2 + a2 3 + 2 + a2 4 (68)
We shallneedthe functionR only in theasymptoticregionsr* ~÷ ±oc. In theseregionsthe func-

tion V reducesto

Vim (e, air) —(e—mcix)2, r —oc (69)

r-~°°

In the interveningregion Vactsas a potentialbarrier, causingback-scattering.Becauseof theexist-
enceof thehorizona “radial” wavemayoriginate from, propagateout of, andbe scatteredback
into eitherasymptoti?~region.We thereforedistinguishtwo classesof solutionsof eq. (67), having,
in virtue of (69), the asymptoticforms

-. exp (ipr*) +Aim (p,a) exp (_ipr*), r* -+ _oo
R,m(P,alr)* -‘ . * * , p> 0, �~‘p+mfZH (70)

Bim (p, a) exp {i(p + mciH )r }, r -~ °°

B
1m(p,a)e~cp{i(p —mciH)r } , r*

R,m(p,aIr)~’ . * — . , p>O, ep. (71)
exp {—ipr } + Aim (p, a) exp (lpr*), r* -+
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Fromnow on I shall placearrowsalsooverthe correspondingbasisfunctions.
Thenormalizationof the basisfunctions,as is well known,is dominatedby theasymptoticre-

gionsfrom which the wavesoriginate.Onemayconstructvery broadwavepacketsconfinedto
theseregionsatearly times.Insertingsuchwavepacketsinto the integralof eq. (6), usingexpres-
sion (61) andeq. (66), andpassingto the limit of infinitely broadpackets,onefinds that theba-
sis functions(63) satisfythe orthonormalityrelations

(i(l, m,p), i~(l’,m’, p’)) = (~(l,m,p), i~(l’,m’, p’)) = i5,,’~S
mm’t5(p— p’) , (72)

andtheir complexconjugates(all otherinnerproductsvanishing),providedonenormalizesthe
spheroidalharmonicsaccordingto

•f5im (t2dl~)5l’m (aei~)d~= 5~’, (73)

andchoosesthe normalizationconstantto be

(74)

4.4. Pastandfuture horizonsand the vacuumstate

A few comments now about the role of the horizon: I madeastatementearlieraboutaspace-
ship gettingtrappedinsideandunableto getout,as if the horizonwere aone-waymembrane.This
is only half of the story. Becauseof the invarianceof theline element(5 1) undersimultaneous
inversionof t and0 theremustbe anotherhorizonfrom which matter(or radiation)canonly es-
cape,without beingableto return.This is known asthe pasthorizon.The otheris thefuture hori-
zon.Equation(70) representsa wavethat hasoriginatedin the pasthorizon.Partof it getsscat-
teredinto the futurehorizon andpart of it escapesto infinity. Equation(7 1) representsa wave
that hasoriginatedat infinity. Partof it getsscatteredbackto infinity andpart of it winds up in-
sidethe future horizon.

I am goingto choosefor the “vacuum” stateof the Kerr blackholethe vacuumdefinedin the
normalway relativeto the basisfunctions(63), with (70)and (71)as my radial functions.In this
“vacuum” there are no particlespresentthat haveoriginatedfrom infinity, andtherearenone
that haveoriginatedfrom the pasthorizon.That thereshouldbe no particlescoming from infinity
seemsreasonableenough,becausespacetimeatinfinity is ordinary familiar spacetime,andthat is
just what we shouldexpectof a sensiblevacuum.But that thereshouldbe no particlescoming
from the pasthorizonis a dubiousassumptionat best,at leastas amodelfor a realblackhole, for
we believethat all real blackholes(if anyexist) were formedby a processof collapse,andfor such
blackholesthereis no pasthorizon.Indeedwe shall seein thenextsectionthat taking the collapse
processinto accountleadsto quite differentboundaryconditionsand to animportantmodifica-
tion in ourresults.However, for the presentI shall leavethe basisfunctionsand “vacuum” as is.
The formalismthenat leasthasthemerit of looking like that of astandardscatteringproblem
andhenceis familiar.
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4.5. Superradiance

I now wish to drawattentionto asmallbut crucialpoint. Look atequation(70). If theazimu-
thal quantumnumberm satisfiesmciH < —p thenc is negative,andwe appearto be dealingwith
a negative-energywave! Doesthis not violateour basicprinciples?The answeris no. Our “prin-
ciples”were foundedupon the assumedexistenceof a globally timelike Killing vectorfield. We
do not havesucha field in the presentcase.;~ is spacelikein theergosphere.The wavefunction
(70) is, in fact, just what it shouldbe. To an observerfollowing a timelike world line nearthe
horizon it appears as a positive-energy wave of angular frequency p. Two other facts should be
noted: (a) The groupvelocity is radially outward for theinitial andtransmittedwavesandinward
for the reflectedwave,as it shouldbe; (b)An attempt to replacethe basisfunctioni~with its com-
plex conjugatewould leadto a violation of the orthonormalityrelations(72).

However,the phenomenonshouldraisea warningflag in our minds.The mathematicalsituation
is analogousto thatwhich holds for a two dimensionalharmonicoscillatorwith negativespring
constant,carryinga chargeandimmersedin a uniformmagneticfield. If themagneticfield is
strong enough all the orbits will be stable. However, one of the two annihilationoperatorsfor the
systemis associatedwith a negative-frequencymode,andthereis no stateof lowestenergy.

That thereis likewiseno stateof lowestenergyfor a scalarfield in the Kerr geometryemerges
from the following analysisdueto Misner [34] andZel’dovich [50,511. By makinguseof the
constancyof the Wronskian

dR2 dR1
R1 — —R2 , (75)

dr dr

for various combinations of the radial wave functions (70), (71), and their complexconjugates,
onefinds that the transmissionandreflectionamplitudessatisfythe following relations:

-‘ p+mciH ~
1 — Aim (p,a)]

2 = Bim (p,a)]2 , (76)
p

— p—mfZH
1 — Aim (p,a)]2 = IBim (p,a)]2 , (77)

p

pA,~(p,a)Bim(p + mciH ,a) = —(p + mci~)B,~(p,a)A,m(p + mfZH ,a), (78)

(p +mci~)B,~(p,a)=pBj~(p+mciH,a), (79)
from which we alsoobtain

IAim (p, a)] = L4im (p + m&2H , a)]. (80)

Theimportantrelationsarethe first two. If mITZH < —p thena waveoriginating in the pasthori-
zonis reflectedbackwitha greateramplitudethanit hadinitially. The sameis true for a wave
originatingat infinity if mfZ~> p.

Misner has called this phenomenonsuperradiance.It is not a newphonomenonin physics.It
was knownalreadyto an oldergenerationof physicists,who called it the Klein paradox.Physically
it correspondsto a processof stimulatedemission,which suggestsimmediatelythe existenceof a
correspondingprocessof spontaneousemission.And indeedthe latterprocessoccurs.The Kerr
“vacuum” is not the stateof lowestenergy.It spontaneouslyemitspairs,oneparticleof eachpair
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going to infmity andtheotherinto the blackhole. As a resultof this steadyprocesstheblackhole
mustgradually loseits angularmomentum.A classicalphenomenonakinto this was first notedby
Penrose[41] who pointedout that a particlethat falls into theergospherecandecayinto two par-
ticles,oneof which goesdown theblackholewhile theotherescapesfrom the ergospherewith
greaterenergythanwas possessedby its parentparticle.In this wayenergycanbe extractedfrom
the blackholeat the expenseof its angularmomentum(and,of course,of its mass).It wasthis
process that first led to the coining of the word ergosphere.

4.6. Particleflux from a Kerr blackhole

The first attemptto calculatethe rateof particle flux from aKerr blackhole,by combining
the transmissionandreflection amplitudeswith the ideaof stimulatedemission,was madeby
Starobinsky[45] (seealsoStarobinskyandChurilov [46]). The first full fledgedcomputation,
basedon secondquantization,was madeby William Unruh [47]. Because Unruh makes crucial use
of thestresstensor,it is particularlyappropriatethat we studyhis results.

We shallneedthe (r, t) and(r, 0) componentsof thestresstensorat infinity, as theseyield the
flux of energy and angular momentum there. I shalltake T~0in its densityform. For the con-
formally invarianttheorywe have

a~a~ a2~
<Trt)vac = p2 sin e [~([~,~]) — ~[~‘ a ati ) ] plus termsthatvanishat (81)

r + vac r + vac infinity.

The first andsecondtermsinsidethe squarebracketsyi’el~apartfrom the numericalfactors,iden-
tical contributionsat infinity. Thereforewe have

/raip a~1\
(Trt)vac —+ ! r2 sin 0\I —, — I ) , (82)

2 Lar at~
which is justwhat theordinary (non-conformallyinvariant)tensorgives.Similarly

(Trø)vac —÷ ~r2 ‘Kh1~~~ ~vac (83)

Eachof theseexpressionsimmediatelyconvertsto a mode-sum,as in equation(12). Insertingthe

basisfunctions(63), (70), (71) into (82), for example,onefinds
(Trr)vac ~ ~ ,f ~

r-~.o~8ir i,m

+p2(1 _]~
1~(p,a)]2)[51~(a~]cos0)]2}~. (84)

p
At this point we shouldregularizethe tensorby insertingan oscillating factor. But it turnsout

thatwe do not haveto if we recognizethat, in virtue of equations(77)and(79), a mode-by-mode
cancellationoccursbetweenthe first andsecondtermsinsidethe curly brackets.The cancellation
occursfor all modesexceptthosein the first term for whichp < —mciH andthosein the second
term for which p < mfZH. * Thesearejust the superradiantmodes.The -+ and÷- modesmaybe
combinedwith the aid of eq. (80), andwe areleft with

To seethis easily makethe shift p —~p + mtIH in the secondterm.
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e ml2
1~

(Trt)vac — ~ f p(iA1m(p,a)1
2— 1)[Sim (a~icosO)]2 dp. (85)

r—~o~ 4ir i,m 0
mt1

1j> 0

In a similar way onefinds

0 mnH

(Tr�,)vac ~-~~-- E m f (I~iim(p, a)]
2 — l)[Sim (a~Icos0)12 dp. (86)r—~ 4ir i,m 0

mt2H> 0

If we now equate the integrated fluxes at infinity to the rates at which the blackholelosesmass

and angularmomentumrespectivelywe find, uponmaking useof (73),

it 2,r mfZH
= lim f dO J’ dO(Trr)vac = ~1- ~ j p(IA,m(p,a)]2 — l)dp , (87)

dt r—~oo 2rr i,m0 0 0
ml1H>0

= — urn ide f d0(T,~)vac = — m f~mp~ a)]2 — 1) dp. (88)

mflH> 0

These arejust the expressionsonewould usein a calculationthat interpretsthe classicalwaveam-
plification as a stimulatedemissionprocessandrelatesit to the ideaof spontaneousemission.

4. 7. Rateofdecay.Critical mass

To converttheseexpressionsto numbersit isnecessaryto estimatethe coefficientsA. Compu-
ter calculationshaveshownthat the superradiancephenomenonis not very efficient(exceptfor
gravitationalwaves[45,46]). The reasonfor this is thatwhenp < ImciHi the function Vof eq. (68)
presentsa potentialbarrierhavinga heightthat goesroughly like P.Using a WKB approximation
to estimatethe barrierpenetrationfactoronegets

l~I2— 1 exp (— f ~Vdr*) e~, (89)

wherer~andr arethe turning points and ~ is a numberroughly of theorderof unity. Onesees
that the dominantmodein equations(87) and(88) is 1 = I, ImI = 1, andhence

dM e~ dJ e~
......— c2 ~_

— “H, — — “Hdt 47r dt 2ir -

At this point it is useful to introducethe so-calledirreduciblemass.It is definedby

M~~Mr÷ (91)

and has a value between MA/~andM. With the aid of equations(56) and(57) onecan easily show

that it satisfiesthe relations(rememberJ= Ma)

M~+-~- =M2, M~ — 4M~r M’~,/M2_a2, (92)
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a J
(93)

4M~ 4MM~

Insertingequation(93) into (90) we get

dJ e~ e~
— —— _____ J—.-- J, (94)
dt 8irMM~ 8irM3

which tells us that the half-life for loss of angular momentumby spontaneous emission is

r’-’ 8ire~M3. (95)

Theageof the universeis 1062.Thismeansthat for a blackholeto havehad-itsangularmoment-
um significantly affectedby this processsinceit was formedits massmustbe less than*

/1062 ~ 1/3
10~° 2X l0’~ g. (96)

87re~

This is atypical asteroidmass.It would be compressedinsidearadiussmallerthan3 x 10—13 cm.

4.8. ConsistencywithHawking’stheorem

The importanceof the irreduciblemassis not to helpwith the algebraabove.It lies in the fol-
lowing differential identity

Mir

dM
15 = 2 2 — ciH dJ), (97)

which may be derived from eqs. (92). By sending test particles into a black holein all possibleor-
bits that reachthehorizon, andexaminingthe incrementsdM anddJtherebyimpartedto thehole,
DemetriosChristodoulou[14] (seealsoChirstodoulouandRuffini [15]) showedthat dMjr can
neverbe negative.SimultaneouslyStephenHawking [301 showedquite generallythat the surface
areaof a black-hole(i.e., of the future horizon) can never decrease. The area A of a Kerr black
hole(ascomputeddirectly from.theline element(5 1)!) is 1 6irM~.ThereforeChristodoulou’s
result is a specialcaseof Hawking’s theoremandcanbe restatedin the form

2A
dA = (dM — ciH dJ)> 0. (98)

— a
2

Now consideroneof the particlesemittedto infinity in the spontaneousemissionprocess.It re-
movesfrom theblack holean amountof energyp andan amountof azimuthalangularmomen-
tum m. Its emissionthereforeproducesthe following chang~in the areaof the blackhole:

~ Expression(95) is actually anupperbound to the half-life, for we havetakeninto accountthe quantaof only onefield. Unruh

[47] hasshownthat neutrinosareproducedata similar rate,andStarobinskyandChurilov [45,46] haveshownthat photons
andgravitonsareproducedevenmorecopiously. Theseparticlesalonealreadyyield a half-life almosttwo ordersof magnitude
shorter.Moreover,massiveparticleswill alsobeproducedif their massesareless thanI ~HI~ For anextremeKerrblack hole
(a = M) of mass1020 therotation frequency I is equalto 1 /4M = 2.5 x 1025 30 MeV, so in this caseelectronsandposi-
trons would be theonly massiveparticlesproduced.For blackholeshavingmassestwo or threeordersof magnitudesmaller,
however,thenumberof particlevaritiessubjectto spontaneousemissionmight increasewithout limit, leadingto explosiveloss
of energyandangularmomentum.
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= — 2 2 — mciH). (99)

But the only particlesthat get emittedto infinity arethosein the ~- superradiantmodes,andfor
thesep — mfZH is alwaysnegative.Thereforethe spontaneousemissionprocessrespectsHawking’s
theorem.

5. Explodingblackholes

5.1. Late-timebasisfunctions

I now wish to reporton someastonishingrecentwork of Hawking [3 1,32] whohasfaced
squarelyup to the issueof the boundaryconditionson the pasthorizon,by consideringwhat
happensin the caseof a realisticblackholethat is formedby collapse,when thereis no past
horizon.For simplicity I shall give the detailsonly for thecaseof nonrotatingblackholes,for
which a = 0, J = 0, ~

2H = 0, r~= 2M, andexpression(51) reducesto the Schwarzschildline
element.To establishcontinuity with what hasgonebeforelet usfirst notewhat the basisfunc-
tions (63), (70), (71) look like in this case.Oneeasilyseesthat theyreduceto*

u(l, m, p]x) = 1 Ri(pir) ~~im(cos0) elm~e~t, (100)
2ir~/2~r

&~‘~+ A,(p) e_iP~~*, r* ~+

R,(pir)-+ . * (101)
B,(p)e1~’~, r* ..+

B,(p) e_j~~~~*, r* -÷ _OC

R
1(p]r)—i~ . * 4- . * (102)

~ + A,(p) e’p’~ , r -+ o~

wherec = p in all cases,andthe coordinater andthe function Varegiven by

r*r+2Mln(__1), (103)
\2M /

/ 2M\rl(l+l) 2M1
V,(e]r) = _~2+ — — ______ + —i-— I . (104)

r / r
2 r J

There are no superradiant modes now (no ergosphere), and the identities (76) to (80) reduce to

B,(p) = B
1(p) B1(p), (105)

IA,(p)I = ]il,(p)], (106)

1 — ]A,(p)1
2 = 1 — IA,(p)12 = IB,(p)12 , (107)

A,*(p)Bz(p) = _B,*(p)A,(p). (108)
The function denoted here by ~im is just lima...,,,,Sim.It satisfiesthe normalizationcondition (73) andhencediffers by a con-

stantfactor from thefunction usuallydenotedby this symbol. Also it doesnot containthe factorexp (imØ).
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Fig. 2.

Although theabovebasisfunctionsareno longervalid for earlytimes(becausethereis no past
horizon) theywill still be usefulto usas t -~oo, after the collapsehasbeencompletedandaqui-
escentblackholehasformed.Figure 2 showswhat the spacetimebehaviorof the radial part of
thesefunctionswould be like if therewere apasthorizon. The figure is drawn usingcoordinates
u and v for which radial nuH directions are at 450 andwhich, nearthehorizons,are related to the
standardSchwarzschildcoordinatesby the Kruskal transformation

= (~jj— 1)1 e~~/4Mcosh(t/4M)

(109)

1., = (~~-— 1)~ er/4M sinh

The Kruskal transformationprovidesa “maximalanalyticextension”of the Schwarzschildline
element, which has the virtue of keeping the metric tensorwell behaved(nonsingular)on thehori-
zons(r = 2M, t = ±oc).Strictly speaking,equations(109)hold only in theright handquadrant
(outsidethehorizons)andmustbe replacedby similarexpressionsin theotherquadrants.The
quadrantomittedin eachpicturemaybe regardedas anotheruniversejoined to ourown through
a “wormhole”, but in the collapsesituationit doesnot exist andhencehasno relevancefor the
present discussion.

Eachpoint on the diagramrepresentsa 2-sphereof radiusr, andlinesof constantr arehyper-
bolae.Lines at45°bearingarrowheadsarelinesof constantphase(wave crests) for the various
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Fig. 3.

componentsof the basisfunctions.It will be notedthat theycrowdtogetherinfinitely denselyat
the horizons.This is an expressionof the gravitationalred shift: The nearerto the horizona wave-
let finds itself the shortermustbe its local wavelengthin order that it have(or havehad)apre-
assignedfixed (monochromatic)frequency at infinity.

5.2. Globalbehaviorof thelate-time basisfunctions

Figure3 showstheactualbehaviorof thebasisfunctionsin the collapsesituation.Herethere
is only onehorizon,afuture horizon,which hasbeenformedby the catastrophicin-fall of a
sphericaldistributionof matter.The coordinates,labeledu andv as before,areagainchosenso
that radial null directionsareat45°.Eachpoint againrepresentsa 2-sphere,exceptfor the v axis
itself, whichrepresentsthe world line of the centerof the massdistribution.Pointsfor which
v < 0 arenow missing. As the collapseproceedsa light coneis eventuallyreached,from the in-
sideof whichnothingcanescapeto infinity. This is the horizon.Its.apex(the birth eventof the
horizon)is locatedat the origin of the u, u coordinates.The point A, at which thesurfaceof the
collapsingmattercrossesthehorizon, marksthebirth of the blackholeitself.

Above thedottedline ACN andoutsidethe horizonin eachpicturethe new coordinatesu and
u, andthe basisfunctions~, ~, coincidewith thoseof fig. 2. Below thedottedline therearesig-
nificant differences.Considerfirst the function~. Above the line ACN the incomingwavesof this
functionoriginateat infinity with unit amplitude.Theymaintainthis amplitudeuntil theyarrive
in the regionwherethe function V1, eq. (104),beginsto assumesignificantvalues.In thediagram
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theouterboundaryof this regionwould be markedroughly by an r = constantline passing
throughthepointC. As the incomingwavestraversethis region their amplitudedecreases,until
it reachesthe value IB,] which they carry as theyplungeacrossthe horizon.Outgoing(scattered)
wavesareborn in the sameregion.Theseescapeto infinity acrossthe line HIJ, carryingan ampli-
tude IA,].

Below the line BCJthe outgoingwavesstill carry the amplitude]~,]to infinity. However,the
scatteringprocessfrom which they originatediffers significantly from that abovethe line. As one
follows thesewavesbackwardsin time oneencountersthe collapsingmatterwell outsidetheho-
rizon, which impliesa weakenedfunction V,. Below the line OL, moreover,thereis no longera
horizonto absorbthe unscatteredincomingwaves.The result is that the amplitudeof the incom-
ing wavesrapidly decreasesas onetraversesthe regionbetweenthe linesACN andOL, anddrops
virtually to zeroin the regionOLKB. Below the line BK the amplitudepicks up again,finally sta-
bilizing, at earlytimes,at the value A,]. Theseearlyincomingwaves,as onefollows their progress
forwardsin time, ultimately becometransformedcompletelyinto outgoingwaves,partly by a pro-
cessof back-scatteringoff of thecurvatureof spacetimeandpartly by passingcompletelythrough
thecenterof the collapsingmatter.They thereforemustcarry the sameamplitudeas the outgoing
waves.

A word mustbe insertedaboutpossiblenon-gravitationalinteractionsbetweenthe scalarfield
(or any other field that one may be quantizing) and the collapsing matter. If there is a moderate
or strong coupling between the two one may ask why we omit it from considerationin thede-
scriptionof the basisfunctionsi~,~, particularlyas thesefunctionspropagateinto andthrough
thematterbelowthe line ACN. The answeris that we shallbe consideringavacuumproblem.
Thereareno field quantapresentat early times.The collapsingmatterthereforeinteractsinitially
only with the vacuumfluctuationsof the field, andthe issuebecomesoneof computingthecor-
rectionsto the physicalpropertiesof thematterarisingfrom suchinteractions,and of makingany
renormalizationsthatmaybe necessaryin the observablephysicalparametersof thematter.If we
assume these corrections already to be included in our description of the matter, we do not have
to considerthemasecondtime. As for the real quantathat get producedduring the collapsepro-
cess,they do indeedinteractdirectly with thematterwhencouplingis present.But I shalldefer
discussionof their behaviouruntil later.

Let usconsidernextthe function i~,the behaviorof which differs markedlyfrom that of ~. The
mostsignificantfeatureof this functionis the crowdingof an infinite numberof outgoingwaves
into the regionjust outsidethe horizon.Considerthe outgoingwavescontainedin the region
OHIJB.Thesewavescarrythe amplitude ]B,] to infinity, acrossthe line HIJ. But theycrossthe
line OL with unit amplitude.Thismeansthat the incomingwavesin the region OLKB, which give
rise to them, must carry from infinity (across the line KL) at least as big an amplitude.Nearthe
line OL the amplitudeof theseincoming wavesmust, in fact, be exactlyunity. Thatis becausethe
numberof wavesnearOL is infinite, andhenceshortwavelengths(high frequencies)dominate.
Suchwavespropagateaccordingto geometricaloptics,without becomingweakenedby scattering.

It is not difficult to determinethe form of ~mnearOL at infinity. First notethat

e~*/2M= (‘ — i) e~1
2M , (110)

which, when substituted into (109), yields
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r*_t~4Mln(u_u), (111)

andhence

m, p x) * 1 YIm (cos0) eimø [exp { i4Mp ln(u — v)} +A,(p) exp {_ip(r* + t)}].
r -~--= 2irV~r

(112)

The form that i~takesnearthe line OL is obtainedfrom (112)by bouncingthe first term inside
thebracketsoff of the v axis (geometricaloptics)andreplacingthe secondterm by expression
(101)forr*_+oo:

~(l,m,p]x) ____ 1 Yim(cos0)eim~[0(—u—v)exp{i4Mp ln(—u—v)} +B,(p)exp {ip(r*_t)}J.
r*_~,o 2irV2~r
nearOL (113)

The stepfunction in the bounceterm effectsthesuddenswitch-off of this term that is evident
from fig. 3(A). To avoid problemsof indeterminatephasein future dealingswith the bounceterm,
it will be usefulto give p aninfinitesimal negativeimaginarypart so that this term actuallyvanish-
es on the line OL.

To get expression(113) into a form that canbe usedonemustreplaceu andu by r* andt. (In
termsof r’~andt the metric retainsits standardSchwarzschildform everywhereoutsidethemat-
ter.) The connectionbetweenthe two setsof coordinatesis obtainedby the following argument
dueto Hawking:

Let k be a smallcontravariantnull inward-pointingdisplacementvectorcloseto the horizon in
the upper part of the (u, v) plane, having the components (—e, e) in the (u,u) coordinate system.
Supposek intersectsN wave crests of the function ~. Let k be displacedin aparallel fashioninto
the past along the constant phase lines (which are null geodesics),throughthe centerof thecol-
lapsingmatter,andout againto infinity. The displacedk will still be null andwill still intersectN
wavecrests(of the bounceterm),but it will now be outwardpointing.Thereforeit must now
havethe components(e, e) (in the (u, v) coordinatesystem).In the (re, t) coordinate system,
which hasthe line elementds2 = dr*2 — dt2 nearinfinity, its componentsmust evidentlybe of
the form (Dc, Dc) whereD is somefactor that is constant(for larger*) alongthe line OL. From
this it follows that

—u—v—~ D(t
0 — r* — t) nearOL (114)

for somet0. This relationmaybe useddirectly in eq. (113).

5.3. The steady-statecomponentand its scalingproperty

Far from theline OL expression(113),with thereplacement(114), is no longerexactlycor-
rect. First of all, the factor D doesnot remain exactly constant. Secondly, the amplitude of the
bounceterm decreases.Below the line BK, for example,the amplitudeof the incomingcompo-
nentmusttendto ]B,] to matchthatof the outgoingwavesbelow the line BCJ.Thesechanges,
however,affect only the transientbehaviorof the quantizedfield. We arepresentlygoingto look
at the stress tensor at large values of r’~abovethe line BCJ. In this region the field hassettledto a
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steadystate,andthe behaviorof i therewould remainunchangedif it werereplacedby a func-
tion whoseform atearly timesweregiven exactly by (113). I shall call the modified functionob-
tainedthis way the steady-statecomponentanddenoteit by the boldfacesymbol :

ii(l, m,p]x) * [0(t
0 — r* — t) exp{i4Mp[ln(t0 — r* — t) + in D] }

r —~ 2ir~/~r

+B,(’p) exp {ip(r* — t)}] ~lm (cos0) e
10 . (115)

The only uncertain quantity in expression (115) is the constant D, whose value depends on how
thegeometrybehavesin the regionoccupiedby matterandhenceon thedetailsof the collapse.
But it turns out that we do not needto know it. This is because D only occursin alogarithmand
hence contributes only an irrelevant phase factor*. The logarithmic occurrence is an expression of
an important scaling property of the wavecrestsnearthe horizonandnearthe line OL: The space-
time distribution of thesecrests,in particulartheir infinite crowding, looksthesameunderall
magnifications.

5.4. Early-time basisfunctions. TheBogoliubovtransformation

Becausethe metric varieswith time during the collapseprocesswe mayexpectparticleproduc-
tion, arisingpurely from geometry,to occur. In orderto computeits ratewe needto definean
inital state.Let usassumethat the geometryanddistributionof matterarestatic atearly times,
before the onsetof the collapseprocess.The basisfunctionsthatareusefulin thisregimehave
the form

f(l, m, plx) = F,(plr) Yim (cos0) eim~e~t, p> 0,

2ir~/~r (116)

F,(plr) exp (_ipr) — (—1)’ exp{i(pr* +

where c pand ö,(p) is the familiar S-matrixphaseshift. Herewe do not havetwo setsof basis
functions,bearingarrows and#-, but only one.The birth of the horizonappearsto effect a
suddendoublingof the numberof degreesof freedomof the field! This is purely a mannerof
speaking,however,as spacetimemaybe completelycovered(up to the singularity)by a sequence
of spacelikehypersurfaces,andthe Cauchyproblemis well posedon everymemberof these-
quence,whetherthat membercrossesthe horizonor not.Thismeansthat the functionsu, are
relatedto the functionsf by an invertible Bogoliubov transformation:

m, plx) = f[~,(p,p’)f(l, m,p’]x) + ~(p, pI)f*(l, —m,p’]x)J dp’

0 (117)

m,p]x) = J’ [&,(p, p’)f(l, m, p’Ix) + ~(p, p?)f*(l, —m,p’]x)ldp’.

The invertibility maybe expressedby the matrix relation(labels suppressed,cf. eq. (15))
* For this samereasonour final results,eqs.(135) and(136),would remainunchangedif theinital matterdistributionwereaspher-

ical, providedonly its total spin angularmomentumvanishes.(SeeHawking [32].)
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(“1” denotinga delta function),which implies

f(l, m,plx) = f [~ (p’,p) m, p’Ix) — ~(p’, p) ~ (1, —m,p’]x)

0 (119)
+ ~j*(p~,p) 1~(l,m,p’Ix) — ~(p’, p) ~i(l, —m,p’Ix)] dp’

It is not possible to calculate the a and 13 coefficientsexactly.However,we needonly thoseparts
of these coefficients that relate to the steady-state regime at late times. To determine these parts
we look at the spacetimebehaviorof the functionf, asdepictedin fig. 4. All incomingwaves,over
the entire figure, begin(at infinity) with unit amplitude.As theypropagateinward, thoselying
abovethe line OL split into two components,aback-scatteredcomponentandacomponentwhich
continues on across the horizon. In the region AHIJC these two components make a total contribu-
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tion to f that is identical to the function zi in the same region. This is the steady-stateregion.There-
fore, usingboldfaceto denotethesteady-statecomponentof f, we have

f(l, m, plx) = ~i(l, m,plx)+ f [~‘,*(p1,p)~(l, m,p’Ix)—~,(p’,p)~~(l,—m,p’]x)] dp’. (120)

The integralin this expressiongives riseto the incomingwavesin regionOLKB of fig. 4 andto the
outgoingwavesin regionOACB, which areshownterminatingon theline AC but which actually
continueon into the steady-stateregionandsuperimposethemselveson theotheroutgoingwaves
there.The integralexpressesthesewavesas a linear combinationof the steady-statefunctions~
and~*.

5.5. Computationof thesteady-statetransformationcoefficients

The coefficientsof the linear combinationmaybe determinedby computingthe innerproducts

,(p’, p) = (f(l, m,p), i.(l, m,p’)) (121)

—(f~(l,—m,p),i(l, m,p’)) , (122)

at early times.At early timesthe exactform of the innerproduct [seeeq. (6)] is not knownbe-
causewe do not know the metric insidethematter.But this difficulty maybe circumventedby re-
placing the functions(116)with broadwavepackets,goingto very earlytimes,andafterwardpas-
sing to thelimit as the packetsbecomearbitrarily large.The functionsF1 thenbecomeeffectively
exp (_ipr*) andthe innerproductmaybe takenin the form

(ui,u2)=ifdrfd0fd~(l_~)r2sin0u~~u2
2M 0 0

00 ir 2ir

ifdr*fdOf dt~r
2sin0u~—u

2, (123)

in which the two-edgedoperatorisjust (61) with a takenequalto zero.
We mayillustratethe procedureby computing :

~,(p’, ~ = ~ f dr* I dOf dØ sinB exp {ip(r* + t)} [1’im (cos0)]2

i 4Mp’ \
X 0(t0 — r

t — t) I + p J exp {i4Mp’[ln(t
0 — r* — t) +ln D]}+B,(p) (p’+p) exp{ip~(r*_t)

\t0—r —t I

= ~ exp (ipt0 )J’ (4Mp’ x_1~~’ +pxi4MP’) C_~~~Xdx

wherex = t0 — r* — t. Sincep> 0 the integrationcontourmaybe rotatedinto the negativeima-
ginary axis. Settingx = —is/p oneimmediatelyseesthatthe integralmaybe expressedin termsof
gammafunctions.With the aid of the well knownrelationz F(z) = J2(z + 1) onegets
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ie21~P’
~,(p’, p) = — ~—,- D’~” exp (ipto)p_14MP’F(l + i4Mp’). (124)

2~/~

In a similar manneronefinds

ie_2~~t~’
_...._~ D~”P’exp(—ipt0)p~’~”~’F(1+i4Mp’). (125)

2w’.../pp
By makinguseof the representationof the deltafunction

~(x)(2ir)
1 fp_1±iXdp (126)

andthe identity

IF(l + ix)]2 = , x real, (127)
sinh irx

andrememberingthatp’ andp” arealwayspositive,oneeasilyverifiesthat the functions , and
0, satisfy the following orthonormalityrelations*:

I [~*(p9P p) ~,(p’, p) — j(p”, p) ~,(p’, p)] dp = 6(p’— p”), (128)

I ~,~p”,p)~,(p’,p)dp0. (129)

5.6. Particleproduction. ThePlanckianspectrum. Temperatureofa Schwarzschildblack hole

If now the quantumstateat earlytimes is takento be the vacuumstaterelativeto the basis
functionsf, thenthe expectationvalueof the stresstensorin the steady-stateregion is given by

(TMV) ~ f T~(f(l,m, p]x),f* (1, m,p]x)) dp

= T~(~(l, m,pIx), ~ (1, m, p Ix)) dp (130)
l,m

+ dp/ dp’ / dp” [~*(ph1, p) ~,(p’, p) + ~ (p”, p) ~(p’, p)] T~(~(l,m,p” ]x), ~*(l, m,p’Ix))

+/ dpf dp’ [;,*(~l p) T~’(~(l,m,p’]x), ~*(l, m,p]x))+~,(p’,p)T~(Z~(l,m,plx),i?(1, m,p’Ix))

— ~p’, p)T~°(u~(l,m,p x), u(l,—m,p’]x)) — ~,(p’,p) T~(u~*(l,m,p’]x), u~*(l,_m,p]x))])

* The functions~j and~j, of which ~j and arethesteady-statecomponents,alsosatisfythe relation (128),aswell asa relation

obtainedby antisymmetrizing(129) in p’and p” [seeeq.(118)].
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Theintegrandof the last integralinsidetl~ecurly bracketsoscillatesvery rapidly whenr* is large,
andhencethis integralvanishesin the limit r* -+ 00~ Thesecond integral inside the curly brackets
(the triple integral)canbe reducedto asingle integralwith the aid of the sameidentities(eqs.
(126) and (127)) as were used to obtain the orthonormalityrelations(128)and(129).Onethen
finds

(T’~”) * -~ ~ f [T~(~(l,m,p]x),~*(l,m,pIx))

r —~oo I,m 0

+ ctnh(4irMp) P~”Cu(l,m,plx)i*(l, m,plx))] dp. (131)

To obtainthe steady-stateparticleproductionrate we needthe (r, t) componentof this expres-
sionabovethe line BCJ. Using the explicit form of the stresstensoronefinds, for both the normal
scalarfield andthe conformallyinvariant scalarfield*,

Trt(i(l,m,pIx),~*(l,m,p]x)) * _~~- [Y,m(cos0)]2p]B,12 , (132)
r—o= 8ir

above BCJ

T~~(~(l,m,pix), ~ m,plx)) * [Yim (cos0)12 p(1 — ~ (133)
r—000 87r

aboveBCJ

andhence,using(107),

(Trr> * — ~_! ~ [Y,m(cos 0)12 f B,(p)12 ~ dp . (134).
4~.2 l,m e8~T~%~hl~— 1

above BCJ 0

Oneimmediatelyseesthat the spectrumof the emittedradiationis Planckian!The blackhole
looks like a blackbody havingthe temperature

T= l/87rkM (135)

seenthrougha filter, the filter beingrepresentedby the transmissionprobability factor lB,]2. This

associationof a temperaturewith a blackholeis Hawking’s astonishingdiscovery.

5. 7. (‘onsistencywith rhermodynamicalequilibriumprinciples

It will be notedthat the temperaturedependsonly on the massof the blackholeandnot on
the detailsof its formation.The temperatureis alsoindependentof the strengthof the coupling
(if any)betweenthe scalarfield andthe collapsingmatter.Thiscanbe seenas follows. Suppose
first that thereis no coupling. Then thecollapsingmatter,evenif it is originally very hot, will ap-
pearto an observeratinfinity to havea temperaturethat decreases(redshift) with exponential
rapidity as it approachesthe horizon.The geometricallygeneratedradiation,however,will con-
tinue to arriveat infinity with the temperatureT. Now supposethecouplingis switchedon. It

* In theseequationsthe stresstensoris takenin itsdensity form.
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thenbecomesimportantto ask: Fromwheredoesthe radiationoriginate?Althoughmuchwork re-
mainsto be donebeforethis questioncanbe tackledwith completeassurance,thereseemto be on-
ly two reasonableanswers.The radiationis eithergeneratedat a steadyratecloseto the horizon
alongits entire length,or elsethebulk of it is generatedinsidethe regionOACB (figs. 3 and4),
which is mostly insidethematter.In the formercasethereis no problem;couplingbetweenmat-
terandradiationwill not affectthe steady-statetemperature.In the lattercasethe following ar-
gumentholds: Becausetheradiationis (a) thermal,and(b) inexhaustible(until the blackholeit-
selfdecays,seebelow) anycouplingbetweenit andthemattercanonly serveto bring the matter
to the sametemperaturethat it has.The quantathat reachan observerat infinity will in this case
mostlyhavebeenemittedby thematter(reradiation)but theywill still carry the temperature1’.
That is, the observedtemperatureof thematterwill stabilizeat the value T insteadof droppingex-
ponentiallyto zero.Note that this implies an extremelyhigh local temperaturefor thematter(in-
finite if the radiation energyweretruly inexhaustible)nearthepoint A of figs. 3 and4, in order
to compensatefor the red shift.

Hawkingdeducedthe existenceof the thermalradiationby meansof wavepacketarguments
not basedon the stresstensor,andhe did not give an exactexpressionfor thetotal luminosity
of the blackhole.With thestresstensorbeforeus it is now easyto obtainsuch anexpression(cf.
eq. (87)):

= lim fd0f dø(Trt) ~ �~ f (2l+ l)IB,(p)l2 ~ dp. (136)
dt r—~ ~ 2ir 1=00 ~ 1

above BCJ

If the temperatureidea is to be consistentwith thermodynamicalprinciplesthereshouldbe no
masslossif the black hole is removedfrom isolationand immersedin aradiationbathat its own
temperature. A stateof equilibrium shouldthenexist,with the blackholeabsorbingasmuch ra-
diation as it emits.This maybe checkedby direct calculationof the absorptionrate.The density
of scalarphotonsat temperatureT, havingmomentain the momentum-spacevolume element
d3paroundp is

d3p . - (137)

(2
7r)

3(eP1t(T— 1)

Thephotonsof momentump that haveimpactparameterscorrespondingto angularmomentuml

arecontainedin acoaxialtubecenteredon the blackhole,having anannularcrosssectionof area
(21+ l)ir/p2. The energyabsorptionrateis obtainedby multiplying this areaby pIB

1(p)1
2 times

expression(137),where~ is the transmissionamplitude(into the blackhole) for incomingradia-
tion, andthen integratingoverpandsummingoven. In virtue of eq. (105)onefinds immediately
that the absorptionrateis equalto the emissionrate dM/dtl .~‘

5.8. Temperatureofa Kerr blackhole

The temperatureideacanbe extendedto Kerr blackholes.It is not difficult to show(for ex-

~‘ It hasbeenpointedout by Larry Ford andStephenHawking (privatecommunication)that the equilibrium betweena black hole
anda radiationbathat the sametemperatureis actuallyanunstableone.The moreenergya backholeemitsthehotter it gets
[seeeq.(146)1,the moreit absorbsthecoolerit gets.Somestarsbehavethis way too, at certainpointsin their evolutionary
cycles.
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ample, by examiningthe line element(5 1.) on the equator:0 = ir/2) that a setof Kruskai-like coor-
dinatesfor the Kerr metric is obtained,in the neighbourhoodof the horizon,by replacingthe 4M
in equations(109)by 4Mr÷/(r~— r). This hasthe consequencethat the effectivetemperatureof
a Kerr black hole is

r~—r~ (138)
8irkMr~

andequation(134)getsreplacedby

(Trt) — ~ ~ f (1 L~im(p, a)]2 )[Sim (a~lcos0)12 P dp.
r 477 ,~ exp{(p—m~2H)/kT}--l

aboveBCJ (139)

If the massof the blackhole is very large,so thatthe temperatureis very small,the Planckfactor
in (139) is negligible for p> ifl&2H andis practicallyequalto —1 forp < mf~H.In this limit, there-
fore, eq. (139)reducesto (85). Thatis to say,if themassis very largethe thermalradiationis
negligible,andthe energyflux reducesto the spontaneousemissionof StarobinskyandUnruh.

5.9. Entropy of a black hole. Thegeneralizedsecondlaw of thermodynamics

If one assigns a temperature to a black hole then, in order to complete the thermodynamical
picture, one must consider assigning also an entropy. The idea that one might be able to assign
an entropy to a black hole was first suggested by.Bekenstein [11,using the analogy of Hawking’s
area theorem (eq. (98)) to the second law of thermodynamics. This theorem led Bekenstein to
definetheentropyas beingproportionalto the area,andhe tried to estimatethe proportionality
constantby the following reasoning:If matterfalls into a blackhole,theentropyit carries will
be effectively lost to the world outside, and a violation of the secondlaw will occur,unlessthe
entropy of the black hole increases by at least as much. The simplest object that can fall into a
black hole is an elementary particle. The least information that one can possess about a particle
is whetheror not it exists;that is onebit of information.The maximumentropythat a particle
cancarry, therefore,is k ln 2, yielding a correspondingchangez~S k In 2, in theentropyof the
black hole. NowChrisodoulou and Ruffini [151showed that there is only one type of orbit by
which an idealizedpoint particlecancrossthe horizonof a blackholewithout increasingthe
areaof the hole,namelyan orbit for which the particlecrossestangentially.If the particlehasa
radiusr andmassin, Bekensteinshowedthat the areaincreasesby an amount~1A = 2mr even
for this typeof orbit. In the quantumtheoryall particleshavean effectiveradiusof theorderof
the Comptonwavelength.That is, r E/m,andhence~A 2~,where~ is somenumberof the
orderof unity. The expressionsfor ~S andz~Awill be consistentif we define

S=k~—~A. (140)
2~

Bekensteinexaminedthis definition in severalotherphysicalcontextsas well, and foundit to be
consistentin everycase.

Hawking’s discoveryallowsus to flx the valueof theconstant~. We rewrite equation(98) in
the form
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(141)

32irMr~

andinvoke the analogyof this to eq. (34). We areled at onceto the assignment

S—~kA=47rkM~r, (142)

and hence

~2ln2. (143)

Becausewe loseall knowledgeof the stateof orderor disorderof thematterthat falls into a black
hole,theentropyof a blackholemustbe the maximumentropythat a body of fixed massand
angularmomentumcanhave.IndeedBekensteinhaspointedout that on an astrophysicalscale
theentropygiven by eq. (142) is exceptionallylarge.For example,theentropyof a blackhole
of solarmassis 5X 1060 erg/deg,whereastheentropyof the sunitself is only about1042 erg/deg.

With the establishmentof ageneralizedsecondlawof thermodynamics,in which only the total
entropyof agiven astrophysicalsystem,including theentropyof anyblackholesit contains,is
requiredto be nondecreasing,Hawking’s areatheoremis transcended.The areaof a blackhole
maynow decrease,andindeedit will if it is not immersedin a radiationbathof at leastequal
temperatureor elsesubjectedto someotherform of bombardment.

5.10. Themassdecaylaw. C,hitical mass

It is of interestto examinethe mass decay law implied by eq. (136). For simplicity I shallap-
proximatethe integralon the right handsideby assumingthat the valueof the transmissionam-
plitudeB,(p) is determinedfor all wavelengths,evenlong ones,by geometricaloptics. In thegeo-
metricaloptics approximationif the function V, of eq. (104)becomespositivefor somevalueof
r thentherewill be no transmission.It is not difficult to verify that if Mp ~ 1 thentransmission
ceaseswhen1 exceeds\/27Mp, andthat thecut-off point doesnot differ greatly from this even
whenMp is small.ThereforeI shall take

B,(p)— 0(sJT7Mp—1). (144)

Inserting this into (136) andmakinguseof

~(2l+1)0(V~7Mp_l)~27M2p2 (145)

we find

dM 27M
2 7 p3 d — _________ 146

dt — 2ir ~ eSnMP— 1 ~ - — lOir X 8~X M2 ( )

The solution of this differential equation is

M3—M~— 27 ~ , (147)

l0irX 8~
whereM

0 is thevalue of M at t = 0. The lifetime of a black hole is therfore given by
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iOIrX 8~
27 M3 , (148)

which may be compared with eq. (95). The approximation(148)maybe improvedby dividing it
by thenumberof distinctmasslessquantathatexist in Natureandby taking into accountalso
the emissionof massiveparticles.

The decaylaw (147) is not exponential,as is the law (94), but explosive.In the last tenthof a
secondof its life a blackhole releasesof the orderof 1030 erg.In order for a blackholeto have
survivedfor the ageof theuniverseits massmust exceed1015 g. If therewereanyblackholes
lessmassivethanthis, createdin theearlyuniverse,theyno longerexist.

5.11. Chargedblackholes

Gibbons[28] andDamourandRuffini [16] havestudiedtheproblemof particleproduction
by chargedblackholes.Here, in addition to emissionof energyandangularmomentumby the
mechanismsalreadydescribed,thereis a net emissionof charge,the electrostaticfield of theblack
holeratherthanthe grativationalfield beingresponsible.For blackholesof massgreaterthan
1 0’~g it is a true Klein-paradoxprocessthatdominates,andthe emissionrate is governedby a
Schwinger-typeformula(for pairproductionin aconstantelectricfield). Forblackholesof smal-
ler massHawking’s thermalprocessdominates,andthe chargeflux is analogousto a thermionic
current.In bothregimesthe blackholetendsto dischargeitself and,unlessit is supermassiveor
carriesan unrealisticallylargecharge,doessoquite rapidly*. It is thereforevery unlikely that small
blackholes(M l0~g) will everbe seenin a bubblechamber,evenif thereareenoughof them
aroundto be statisticallysignificant(which in itself is extremelyunlikely, asmaybeinferred by
consideringthe knownlimits on the massdensityof the universe).

5.12. The nakedsingularity

If the areaof a blackholegoesto zero in a finite time then the eventthatmarksits disappear-
anceis a nakedsingularity.This follows from the necessarilynoncausalstructureof spacetimein
the vicinity of a vanishingeventhorizon.The quantumtheorythereforeappearsto leadnot only
to aviolation of the Hawking areatheorembut alsoto a violation of the cosmiccensorshipprin-
ciple (i.e., the principlethat singularitiesotherthanthe original Big Bangarealwayshiddeninside
eventhorizons).It consequentlybecomesof greatinterestto examinethe geometryof a decaying
blackholein finer detail.

UnfortunatelyHawking’sderivationof the thermalemissionphenomenon,by concentrating
mainly on the radiationat infinity, yields little or no informationaboutchangestakingplace near
the horizon.The thermalemission,as we haveseen,is insensitiveto the detailsof the collapsepro-
cess.The questionarises:canwe get moreinformationby constructingidealizedmodelsof col-
lapse,which permitus to studythe behaviorof the basis functionsduring the collapseitself?
Hawking, in fact, first discoveredthe thermalemissioneffect via this route. Buthe was dissatisfied

* Ruffrni and Wilson (quotedin DamourandRuffini [161) haveneverthelesssuggestedthat blackholesof masslargerthanM® (

2 X i0~g) may carry a largechargeif surroundedby anappropriateplasma.
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with the derivationsbecausetheydid not explainthe insensitivityof the effect to the model.He
did not publishhis discoveryuntil, as he put it (private communication),he “found abetterway”.

Ulrich Gerlach[27] andDavid Boulware [3] haverecentlyrederivedthe Hawkingresultusinga
collapsing spherical dust-shell model. The following picture appearsto emergefrom their analysis:
The thermalradiationoriginatesin the shell itself. The shellalwaysremainsoutsidethe horizon.
The radiationdrawskineticenergyfrom the shell, andthe areaof thehorizon,which is propor-
tional to squareof the sumof the rest, kinetic andgravitationalbindingenergiesof the shell,stea-
dily decreases.Theareaof theshell andthe areaof the horizonvanishsimultaneously.

Many issuesremainto be settled,however,beforethis picturecanbe acceptedas firmly estab-
lished.First of all, it is unlikely that thecollapseof the shellcan be meaningfullyfollowed beyond
thepoint at which its radiusreachestheabsoluteunit —‘ i0~cm (the so-called,“Plancklength”).
At this point the conceptof a classical“backgroundgeometry”breaksdown becauseof quantum
fluctuationsin the gravitationalfield itself. What lies beyondis anybody’sguess.

Secondly,thereis privatedisagreementat presentamongthe expertsconcerningthe “local
reality” of the thermalradiation.Everyoneagreesthat the radiationat infinity is real. The dis-
agreementsareoverits reality nearthe horizon.Hawking [311 believesthat it is meaninglessto
speakof the radiationas originating in anygiven region.Becausethe horizonis a global construct
and becausean observertraversingthe horizonin free fall seesnothingunusualaboutthe geometry
there,Hawking in particularrepudiatesthe notion that the radiationoriginatescloseto thehori-
zon.The issueis complicatedby the difficulty of defining“particle” in the absenceof a timelike
Killing vectorandby the insistenceof someworkersthatwhat an observerin freefall calls a par-
ticle differs from what anacceleratedobserver(e.g.,one“at rest” in a Schwarzschildfield) calls
it.

If only to stop nonsense discussions, it seemsfairly urgentto attemptto settlethe latterissue
by buildingexplicit modelsof “particle detectors”andcomputinghow theyperformundercon-
ditionsof accelerationandfree fall. But it is surelyequallyurgentto turn one’sback(at least
momentarily)on the issueandaskinstead:What is the quantumexpectationvalueof thestress
tensornearthe horizon?Whatmodification is inducedin the spacetimegeometry(both inside and
outsideof the horizon)by the actionof this expectationvalue?As I havepreviouslyremarked,a
properdefinition of the effectivestresstensormusttakeinto accountnot only the real particles
producedbut the virtual particlesas well, andhencethe effectivestresstensorwill not be well de-
fined until we haveawell definedandconsistentway of regularizingandrenormalizingTMV.

6. The divergences

6.1. Resuméofproposals

The methodsthat havebeenproposedso far for dealingwith the divergentpartsof TMV fall into
two classes:(1) covariant schemes designed to show that the divergencescanbe cancelledby ad-
ding countertermsto the gravitationalactionfunctional,and(2) frame-dependenttechniques,in-
troducedwithin thecontextof specific physicalproblems.Amongthe namesassociatedwith the
first classare‘t Hooft andVeltman [331,Capperand Ramón-Medrano[7] (seeal~oCapper,
LeibbrandtandRamOn-Medrano[8] andCapper,Duff andHalpern[9]), DeserandVan Nieuwen-
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huizen [181,andUtiyamaandDeWitt [48]; namesassociatedwith the secondclassareZel’dovich
and Starobinsky[52] (seealsoZel’dovich, LukashandStarobinsky[53]), andParkerand Fulling
[39] (see also Fulling andParker [25], andFulling, ParkerandHu [26]).

The authorsof the class-2schemesareprimarily concernedwith particleproductionin the early
universeandduring its final collapse.Oneof their aimsis to determinewhethercurvature-induced
particlecreationandthe virtual processesassociatedwith it could havedampedanyinitial aniso-
tropiesthat werepresentin theuniverseandhaveled to a cosmologycompatiblewith presentob-
servations.For thisthey needa finite stresstensor,from which the infinities havebeensubtracted,
to useas a sourcethat reactsbackon the spacetimegeometry.Zel’dovich andhis associateshave
chosen,somewhatpragmatically,aparticularlysimplealgorithmfor subtractingtheseinfinities
within thecontextof a spatially flat Kasnérmodel,andfind that the resultingstresstensorleads
to a rapid isotropizationof the universe.(Seethe referencesfor the details.)ParkerandFulling,
moreconcernedwith the theoreticalaspectsof the problem,attemptto go beyondthis algorithm
by extendingit to casesin which 3-spaceis curvedandshowingthat the subtractionsmaybe ef-
fectedby suitablecounterterms in the gravitationalactionfunctional.They arethustrying to
providea solid physicaljustification (orat leasta consistencyproof) for the algorithmandto es-
tablishcontactwith the covariantschemesof class1. They haveachievedonly partial successto
date;somepuzzlingfinite termsremain that cannotbe identifiedwith tensorcomponentsof the
requiredtype.

A major stumblingblock in investigationsof this kind is the difficulty of controlling thea
priori geometrical(tensorial)characterof selectedpartsof divergentmode-sumswhenthe basis
functions are those appropriateonly to very restrictedtypesof geometries.Unfortunatelythe
covariantschemesof classI referredto aboveare of no help, for two reasons.Firstly, theyare
directly applicableonly to weak (linearized)gravitationalfields in flat spacetime*,andsecondly,
they are usableonly if the wholeproblemcanbe setup in a Lorentzcovariantmanner.Thereis
however,ascheme,known as “the methodof the backgroundfield”, that bypassesLorentzco-
varianceandachievestrue generalcovariancein astraightforwardmanner.It is a techniquethat
I havebeentrying to sell for a numberof years[19, 20]. Workersin effective-potentialtheory
and in weak-interactiontheoriesof the Yang—Mills typehavefound it useful,andwereit not for
theeffort requiredto learnit (on top of all theotherthingsonemustlearnin orderto handle
quantumfield theoryeffectively)more workersin generalrelatively would havefound it useful
by now. At anyrateit is theonly methodof which I am awarethat seemscapableof resolving
the difficulties at the presenttime, and in this final sectionI shalluseit as a vehicleto display
the basicideaof the Zel’dovich—Strobinskyschemeandshowhow the goalsof ParkerandFulling
maybe reached.

6.2. “In”and “out” regions,Bogoliubovcoefficients,and the S-matrix

In order to fix ideaslet us assumethat spacetimehastwo causallyconnectedstationaryregions,
an “in” regionandan “out” region,eachpossessingcompleteCauchyhypersurfacesanda time-
like Killing vector, as describedin section1. 3-spacemaybe either finite or infinite, with arbitrary
* Theauthorsof theclass-i schemeshabituallydisplay countertermshavingfull generalcovariance,but theyarecheating.All they

directly verify, with their Lorentz-covaxiantmomentum-spaceclosed-loopcalculations,arethequadraticpartsof theseterms.The
full countertermsareobtainedby invokinggeneralcovarianceand/orthe so-calledWard—Slavnovidentities.
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connectivity. I shallarguelater that the assumedexistenceof the “in” and“out” regionsis ines-
sentialto the final results.The subtractionprocedurechosenwill remainvalid in the limit as the
volumesof theseregionsgo to zero.

Let {u~~1}and {Uouti } be completesetsof normalizedbasisfunctionsthat containonly positive
frequenciesin the “in” and“out” regionsrespectively.They will be connectedby aBogoliubov
transformation(cf. eq. (14)),

= ~(cs~,u~01+ 13,u~01*), (149)

wherethe transformationcoefficientssatisfythe relation (15). Forsimplicity I shall assumethat
the field beingquantizedis a scalarfield, but I shallnot insistthat it be masslessor conformally
invariant.The field equationswill havethe form

F~p~g”
2(~p.,~—~Rtp— m2~p)= 0, (150)

wherem is themass,R is the curvaturescalar,and~ is a numericalconstant.(For the conformally
invariant field m = 0 and~= .~.)The methodsandqualitativeresultsof this sectionwill be equally
applicableto fieldswith spin, both fermion andboson.

The vacuumstatevectorsin the “in” and“out” regionsaredefinedby

ainj]in, vac) = 0, a
0~5~Iout,vac) = 0, (151)

for all i, where

p ~(ajniuinj+ajni*uini*)= ~ (152)

The annihilationoperatorsin the “in” and“out” regionsarerelatedby (cf. eq. (16))

= ~(~i.*ai. — ~ljj*ainj*), am, = E(a,jaout,+131i*ao0tj*). (153)

Theserelationsallow oneto constructthe S-matrixin termsof theBogoliubovcoefficients.

6.3. Particle creationandannihilationamplitudes

Of particularimportanceto quantumcosmologistsarethe many-particleproductionandanni-
hilation amplitudes:

jfli’
2 v

111,, e_iW.~out,i1 ...i,, in, vac> (154)

~ A,1 ... ~,, e~’~’out, vacjin, i1 ...i,,> , (155)

where

eiW (out, vaclin, vac) , (156)

]in,il...in)~ajni1*...ainj*]in,yac> (157)

out, is...i~)Ea00t,~ ...aout,~Iout,vac) . (158)
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Assumingunit normalizationfor the “in” and“out” vacuumstatevectors,onemaywrite
°~ ~n/2

]in,vac)eiW ~ . ~. V11 jnlout,Ji...jn)
n=o fl. jj...j~

(159)
(~\n/2

out,vac>e~~’~ ‘ “ . ~. A,1i~Ijnj,j~)
n0 n. j~...j,,

Insertionof~theseexpressionsinto (151)anduseof relations(153)yield

i”
2

0 = e1W ~ —~--~1~{i’~V~
1...j~,ka~,Iout,j1...j~)+ V~1 1~j3,lout,k,j1 .../n>} (160)

0 = e~ ~ j)flI2 ~ {(_i)~
2Ail...ifl,k*a,kIin,/l.../n) —A

11 1~~]in,k, /i...Jn>} (161)
n0 fl. j1...j~,k

from which onemayinfer

V,j = i ~ ~ jk A~,= —i 1
3k,a 1kj~ (162)

0, nodd
V~

1 ~n= . . (163)
~V1,12 V,,,_1,,,, neven

0, nodd
~ ~ . (164)

A,112 A,~_11~, n even

where“s,,” denotes a summation overthe n!/2”/
2(n/2)! distinct pairingsof the labelsi

1 ... i,,.
Equations (163)and(164)revealthe particleproductionandannilationprocessesas composed

of individual pair creationandannihilationevents.The complete.symmetryof the amplitudes
(Bosestatistics),in particularthe symmetry

V,1 = V~, A,1 = A1, , (165)

follows from eq. (15). (In the fermioncasecompleteantisymmetryholds.)Existenceof the inverse
matrix (a’,,), appearing in eqs. (162), follows from

aat = 1 + ~3j3t (positive definite). (166)

6.4. One-particlescatteringamplitudesand the~opticaltheorems

The remaining structural elements of the S-matrix are the one-particlescatteringamplitudes:
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+ i I,, e~~’(out,ilin, /> = e_iW(out, ilainj* in, vac>

= ~ i____._ �~ Vklkfl(out,i](a,,*aout,*+131,aout,)lout,kl...kn>

n=0 n! k1...1C~,1

~ ~ (167)

Suppressing labelsandmakinguseof the symmetryof V1,onemayrewrite this in the form

1 +iI~*_(~3*~_l~j3a* a_l~ 13a* —
1’(a”&— l)a’~ . (168)

The content of eq. (15) is then contained in the following identities, which maybe derivedfrom it:

(l+iI) (1—iT~)=l—VV1~

(l—i[~)(1+iI) =1_AtA (169)

V~(l+iI) =(1_iI*)A

A(1_iIt)=(1-4-ir)v~
Theseidentitiesconstitutethe relativistic versionof the well knownoptical theoremand, together
with eq. (1972) below,guaranteethe unitarity of the completemany-particleS-matrix. (See
DeWitt [20]. For the fermioncaseseeSchwinger[.44].)

6.5. Vacuum-to-vacuumampliTude.Relationof its divergencesto thoseofT~~V

The only piecemissingfrom the abovederivationis the vacuum-to-vacuumamplitudeitself. This
is obtainedby imposingthe conditionof unit total probability for transitionout of the initial va-
cuumstate:

1 = E ± ~ l(out,i
1...i~lin,vac>l

2 e_2Imf~’~ ~ ~ iv,,...,~i2
n=0 n! ‘~...,,, non! ,~...i,,

= e21”~’det(1— VVt)_1!2 , (170)

whence,in virtue of (169),

e_21mw = det(1 — VVt)’/2 = det(1 — AtA)h/2 , (171)

and,with a naturalchoiceof phase,

eiW = det(1 + i I)”~ = (det a)”2 . (172)

The determinantsaboveareof the Fredholmtype,anda variety of methodsis in principle avail-
able for their evaluation.Thedeterminants(171),which yield the imaginarypart of W, are finite.
But (172),which yieldsalsothe real part of W (andhencethe naturalphase),containsdivergences,
the verysamedivergences,in fact, as arecontainedin the stresstensor.To seethis, imaginethat
the metric tensorsuffersan infinitesimalchange~ yieldingachange135 in the actionfunction-
al (4) for the field p. If the supportof 6g~Vis confinedto the spacetimeregionbetweenthe “in”
and“out” regionsthen,by awell knownvariationalprinciple (which incorporatesthenatural
phase),obtain
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6W = _ie_iW6e~’= ie_iw6<out,vac]in, vac = e_iW<out,vacl6Slin, vac) , (173)

which, in virtue of eq. (11), yields

6W .

2 = e_IW <out, vac]Pw(W, ~p)]in,vac>= —_ ~ A,1 .,,, <in, i1 . . .4, I~”(mp,~)]in, vac)
n’on! ~i...in

= ~ T~w(u1,,~, u~,~*) + i ~ A,~T’~”’(u1~,*, u~/*) . (174)

Supposeno particlesarepresentin the “in” region.Thenthe first term on theright of eq. (174)
(last line) is the expectationvalueof the stresstensor,andwe have

(in,vac]T~]in,vac)=2 —i ~A,iT~~’(uinj*,uin,*). (175)
6g,2~ 1,/

Similarly,one finds

6W
<out, vac]T’~]out,vac) = 2 —i ~ ~ u0~t1*), (176)

6g,.,,) ~,f

and,moregenerally,analogousexpressionshold for the expectationvaluesof the stresstensorin
otherstatesas well. The secondtermson the right of eqs.(175)and(176) (andanalogousterms
for theexpectationvaluesin moregeneralstates)arefinite. In everycasethe infinities arecon-
tainedin the term 26W/6g,,~.Thereforeit sufficesto study W to studythe infinities.

6.6. Green‘s-functionanalysisof 14/

It is convenientto begin this studyby rewriting the variationallaw (173) in the moreexplicit
form

13W = 4 e~~’<out,vac]~p6F ~p]in,vac> = .~e~
11~’Tr(6F<out,vac][~p,p]+ in, vac>) , (177)

where“Tr” indicatesthat anintegrationis to be carriedout overthe suppressedspacetimelabels
that 13F andthe two ~p’sbear.Introductionof theanticommutatoris allowedbecauseof thesym-
metry (reality) of the self-adjointoperator6F in the bosoncase.(In the fermioncasethecommu-
tatorwould appear.)Now

4 [~p(x), mp(x’)]+ — (~p(x)p~x’))+= 4 [0(x’, x) — Otx,x’)][~p(x), ~(x’)]_ , (178)

where“( )÷“ denotesthe chronologicalproductand0(x,x’) is the chronologicalstepfunction:

1 if x lies to the future of a spacelikehypersurfacethroughx’
0(x,x) . (179)

0 otherwise.

Becauseof the commutativityof the ~p’sfor spacelikeseparationsthe choiceof the hypersurface
in (179) is immaterial.Thecommutatoris well known(seePeierls[40]) to be givenby

[p(x), ~p(x’)]_ = i[Gadv(x, x’) — Gret(X, x’)], (180)

whereGadv and Gret arethe advancedandretardedGreen’sfunctionsfor theoperatorF. Therefore



B.S. DeWitt, Quantumfield theoryin curvedspacer/me 341

4 [~x), mp(x’)]+ — (~p(x)p(x’fl.,.= 4i [Gadv(x, x’) + Gret~X,x’)] iG~x,x’) . (181)

It is alsowell knownthat*

e_iW<out,vac](~p(x)mp(x’))÷in, vac) = —i G(x,x’), (182)

whereG is theFeynmanpropagatorrelativeto the “in” and“out” regions:i.e., thatGreen’sfunc-
tion of F which,regardedas a functionof eitherof its arguments,haspurely positive-frequency
behaviorin the “out” regionandpurely negative-frequencybehaviorin the “in” region. [Equa-
tion (182) is mosteasilyderivedby introducinganexternalsourceJ(x) betweenthe “in” and
“out” regions(coupledlinearly to ~p(x)in 5), takingthe secondvariationof W with respectJ, and
thensettingJequalto zero.] Therefore

4 e_iW<out, vac] [p(x), ~(x’)]÷ un,vac) = —i[G~x,x’) — G(x,x’)] 4 G(’)(x, x’). (183)

G~1~is sometimesknownas “Hadamard’selementaryfunction”.
In terms of the various Green’s functions above the variational law (177) may be rewritten in

the compact forms (labels suppressed)

6W~Tr(G~’)6F) —4iTr(G 6F— G 13fl _4iTr(G 6F— Gadv 6F). (184)
ret

Because

FG1, FGadv~l
ret

eq. (184)maybe formally integrated,yielding

W = —4 i(ln det G — ln det Gadv)+ tF (186)
ret

= e~’~(det G)’12/(det Gadv)”2 , (187)
ret

wherec1 is a (necessarilyreal) constantmetric-independentphase.

6. 7. TheSchwingerformalism

Equation(184)showsthat in orderto computethe functionalderivativeof W with respect to
the metric it suffices to know the Green’sfunctionsGandG. A generalknowledgeof thesefunc-
tionsis, of course,as difficult to obtainas the expectationvalueof the stresstensoritself. Butbe-
causeF (andhence6F) is a local differential operatorwe needto know how thesefunctionsbe-
haveonly whenthe two pointsx andx’ areclosetogether.For this purposeatechniquedueto
Schwinger[43] is particularlyuseful.Oneintroducesa fictitious (i.e., non-quantum-mechanical)
Hubertspace,asetof formal operatorsxM,p,, satisfyingthe commutation relations

[xM,x~]=0, [xM,p~]=i6Mv, [p~,pV]=0 , (188)

anda setof eigenvectors]x) of thex’2, normalizedaccordingto
* Definition (182)for the Feynmanpropagatordiffers from the conventionaloneby a factor i. Thechoice(182) hastheadvan-

tage thatall theGreen’sfunctionsthensatisfy the sameequation:FG(x, x’) = —6(x, x’).
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= 6(x,x’) . (189)

Onethenwrites

g”4(x) F(x, x’)g~/4(x’)= (xIg”4Fg1’4ux’)

g’14(x) G(x, x’) g”4(x’) = <xug”4Gg”41x’) (190)

where [seeeq. (150)]

g’14Fg’/4 = _g ~ — — m2 , (191)

g —det~ g,~’ g~,,(x), etc., (192)

and

FG = —1 . (193)

The basisvectorsIx> transformasdensitiesof weight4 under coordinatetransformations,andthe
reasonfor affixing the factorsg114 ,g1/4 aboveis to obtain operatorsthat leavethesetransforma-
tion propertiesintact.

6.8. TheFeynmanpropagatorand the WKB expansion

It turnsout that a knowledgeof the Feynmanpropagatorautomaticallyyields a knowledgeof
the Green’sfunctions,Gret, Gadv and?. Hencewe mayconfineour attentionto the former. In
flat spacetimeit is well knownthat the boundaryconditionson the Feynmanpropagatorareauto-
maticallysecuredby giving m2 an infinitesimalnegativeimaginarypart or, what is the samething,
by giving theoperatorF an infinitesimalpositiveimaginarypart.This simplerule maybe verified
in perturbationtheory,as well as by morepowerfultechniques,andcontinuesto hold in thepres-
ent curved-spacetimecontext.The only restrictionis that thepointsx andx’ mustbe takento lie
eitherin the “in” region,the “out” region,or the region in between,andthat all integrations(and
variations)mustbe confinedto this domain.

Accordinglywe maywrite

g’14Gg’14 = g~14Fg’/4 + iO = f exp (ig1!4Fg’14s) ds, (194)

which yields

G(x,x’) = if g”4(x) ~, sux’, 0) g’/4(x’) ds, (195)

where

x, sIx’, 0) (xuexp(ig1~4Fg~/4s)Ix’>. (196)

The matrix element(196)maybe regardedas the transitionamplitudefor a fictitious dynamical
system.It satisfiesthe “Schrddingerequation”
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i-~—<x,sjx’,0) = (—V~v~+ ~R +m2)<x,slx’, 0), (197)

where“vi,” denotesthe covariantderivative.For thestudyof this amplitudewhenx andx’ are
closetogetheraWKB expansionsuffices:

i D’12(x,x’) r o(x,x’) 1
<x,slx’,O)— expi i —im2s+~2(x,x’,s)j. (198)(4~l.)2 ~2 L 2s

HerefZ is a function,presentlyto be determined,that vanisheswhens = 0, a is one-halfthe square

of the distancealongthe geodesicbetweenx andx’, andD is the 4 X 4 determinant

D 2 — det (— a2a/axMax’v). (199)

Apart from a factor(l6s4~’,Dis the Van Vieck—Morettedeterminant(seeVan Vleck [49] and
Morette [36]) for a dynamicalsystemwith action functiona/2s(i.e., for aparticleof mass4 exe-
cutinggeodesicmotion in a four-dimensionalmanifoldof signature(—, +, +, +)). It satisfiesthe
identity

= 4, (200)

whichmay be derivedfrom the “Hamilton—Jacobiequation”

(201)

Dandamaybe regardedas single-valuedfunctionswhenx andx’ aresufficiently closeto one
another.Strictly speaking, whenthereis morethanonegeodesicconnectingx andx’, expression
(198)shouldbe modifiedby the additIonof extraterms,onefor eachgeodesic*.In particular,
when3-spaceis compactthereis an infinite numberof such geodesics, andan infinite numberof
terms is needed(seeDowker [21, 22]). However,it is only the leading termthat givesriseto the
divergencesof the theory,so I keeponly it. The numericalfactorsin front arechosensoas to
securethe normalization

(x, sIx’, 0> 6(x,x’). (202)
5—’ 0

Substituting (198) into (197) andmakinguseof (200) and(201), onefinds that the function
~2mustsatisfythedifferentialequation

iafz/as+ D’ (DfZ;’~)~+ &22 + is a!’~2,,= — D “2D1’2.,,~. (203)

The solutionthatvanishesass goesto zeromaybe expressedas a powerseries,

(204)

wherethe coefficientsaredeterminedby the differential recursionrelations

If x and x’ arealmost-conjugatepointsalongoneof thesegeodesicsthenanAiry interpolation (or generalization thereof) of the

WKB form mustbe usedfor the correspondingterm.
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+ a1 = D

112D”2.,.~ —

0a2;M+ 2a
2 (205)

n—2

+ na D’(Da 12) + ~ ar;,2an_r_i!
1, n = 3,4...~ n n—i; ;,~

r 1

Theserelationsmayin principle be solved,in succession,by integratingalongthe geodesicsemana-
ting from x’.

6.9. Seriesexpansions

We now have
~1/2 1

G(x,x’) = ~ f —~exp {i(a/2s—m2s)}e~~~ds, (206)

where

~(x, x’) 2 g112(x)D(x,x’)g1”2(x’). (207)

The integral(206)maybe evaluatedas an asymptoticseriesin inversepowersof m2 by expanding
the factorexp {~2(s)}in apowerseriesin s andintegratingterm by term:[~ a~

G(x,x’)— exp(4~.)2 (~——---~) .j 5 —i- exp {i(c/2s—m2s)}ds

~i/2 [ ~ a,, “ a \ ‘~ ~ m2H~2~((—2m2o)’12)
= — — exp

8ir n=i ~ am2) I (—2m2a)’/2 . (208)

HereH}2) is the Hankel functionof the secondkind, of order I. Explicitly

m2H~2~((—2m2a)’/2)- I ( 1 + 2m2 1[~y+4ln(m2/2)+41n(a + iO)]

(—2m2a)’12 in a+iO
(209)

2m2a (2m2a)2 1)
-+ + +~El 2m2a (2m2a)2 ~ —~ 22.4 (1 +~) 22.42.6 (1+4 +~ ii2 22~4 22.42.6

The jO’s appear because the Green’s function Gis actually a distribution,beingthe “boundary
value” of a functionanalytic in theupperhalf a-plane.With the aidof therelations

1_____ — iniô(a), ln(a+iO)=lnIaI +iniO(—a), (210)
a+iO a

oneeasilyseparatesG into its components~ andG~’~(eq.(183)):
~1/2 r

~(x,x’)—expI
8in L~

1 ~)“] (13(a)_m20(_a)[4 22. 4 22. 42.6+ + +2m
2a (2m2a)2

~1/2

8ir

—(4a~+a
2)aO(—a)(.~+~ ni

2q+...)+...} , (211)
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~1/2 1
G~1~(x,x’)~4in2 [~+m2(7+4 lnIm2a/2I)(l +~ m2a+ ...)—4 m2 —~m4a—

—ai[(’y+4ln~m2a/2I)(1+4m2a+...)_4m2a_...]

+(4a~+a
2)a[(7+4lnIm

2a/2I)(4+4m2a+...)—.~—...]+...

~ (212)

Althoughthe Green’sfunctionG is real, the functionG~1~is generallynot. This fact is not revealed
by eq. (212).An asymptoticexpansionin inversepowersof m2 is incapableof yielding the ima-
ginary part,which is nonvanishingwheneverparticleproductionoccurs.

6.10. The effectiveLagrangian

Returnnow to equation(184)which, in the Schwingerformalism,maybe rewrittenin theform

6W = ~Tr [g’/4G(’)g1I46(g’I4Fg~/4)1. (213)

In virtue of the precedinganalysisthis is equivalentto

13W _4iTr [g’/4Gg1!46(g’/4Fg1!4)] , (214)

providedwe throw out the iO’s thatappearwhenG is expressedas a functionof a. Insertingeq.
(194) into (214),we get

13W = 4 Tr f exp (ig’I4Fg’!4s) 13g~14Fg’14)ds

= _.13 Trf s~exp (i g’14Fg’14s)ds= 13J’L d4x , (215)

andhence

wfLd4x+const. (216)

wherethespacetimeintegralis over the domainbetweenthe “in” and“out” regions,andthe func-
tion L is an effectiveLagrangian,given (seeeqs.(196)and(198))by

L=_’_f s’<x,slx,O)ds

= — (32ir2)‘g’/2 5 s~exp [—im2s+ £2(x, x, s)] ds+ termsarisingfrom multiple
0 geodesics(if any). (217)

In passing to the last line usehasbeenmadeof the coincidencelimits
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a ------f 0 a12 —÷ 0 a.12,, —p g,,,, —p —ga,, D —p g. (218)ax
12 ax” x’—’x x

The integral(217) divergesat thelower limit. Note, however,that it is formally ascalardensity
constructedentirelyout ofspacetimegeometry.This meansthat W, given by eq. (216), is formal-
ly acoordinate-invariantgeometricalquantity.If we canfind a methodfor splitting off its infini-
ties in acoordinateinvariant andmetric-independentway, the remainder,Wreg,will automatically
yield a conservedcontributionto the expectationvalueof the stresstensor:

2(bWreg/6g
12v);v = 0. (219)

This means thatthe expectationvalue itselfwill beconservedin virtue of the differentialequations
satisfiedby the basisfunctions.

6.11. The methodof “backgroundfield”. Identityof the single-loopand WKB approximations

Now is perhapsthe time to explainwhy the formalismbeingpresentedhereis called “the
methodof the backgroundfield”. I remarkedearlierthat the methodis applicableto fields of
any spin. This includesthegravitationalfield itself The geometryon which W dependsis thena
classicalbackgroundgeometryandthecontributionsto W, of the typeconsideredin this section,
comefrom the linear fluctuationsawayfrom this geometryimplied by the quantumtheory.It is
sometimeserroneouslybelievedthat themethodof the backgroundfield stopshere,i.e., that it
is merelythe quantumtheoryof alinearizedfield on aclassicalbackground.Actually the method
embracesthe full gamutof self-interactionsimplied by the nonlinearcharacterof the gravitational
field. The computationsof this section(or rathertheir equivalentsfor the puregravitationalfield)
yield only the first approximationto W, andhenceto thevacuum-to-vacuumamplitude.This ap-
proximationis, in fact, the WKB approximationandis sometimeswritten by including the classi-
cal actionin the phase,in the form

(det G)’/
2

<out, vaclin, vac = el~h’) (det Gadv)L’2 e~, (220)

ret

where the constant c1 of eq. (187) has been absorbed into S.* The ratio of the two determinants
in front maybe shownto be preciselythe Van Vleck—Morettedeterminantfor the classicaltra-
jectory (history) followed by the backgroundfield.

In conventionalterminologythe WKB approximationin field theory is known as thesingle-
closed-loopapproximation.Higherorder approximationscanbeput into one-to-onecorrespond-
encewith diagramshavingmorethanoneclosedloop, in the familiarmanner.The only difference
from textbookconventionis that the propagatorsassociatedwith internal linesarepropagatorsfor
curvedratherthanflat spacetime.If severalinteractingfields are to be consideredat oncethen
eq. (220)still holdsprovidedacombinedbackgroundfield is introducedandS and W arethe total
actionandvacuumcorrectionrespectively.It is well known that thenth-orderfunctionalderiva-
tivesof S + W with respectto the backgroundfieldsare the total nth-ordervertexfunctionsof
the theory,and the exactS-matrixis obtainedby replacingS by S+ W andcalculatingall am-

* HereS is the actionfunction fot thefull nonlineargravitationalfield.



B.S.DeWitt, Quantumfield theory in curvedspacetime 347

plitudesin the treeapproximationonly. SincetheS-matrixultimatelygovernsthecoherentscat-
teringof large-amplitude(classical)waves,as well as of individual particles,it follows that S + W
and not S, is the effectiveactionfunctionalevenfor macroscopicfields. For this reasonthepro-
posalto takereal andvirtual quantumprocessesinto accountin generalrelativity, by writing
Einstein’sequationin the form*

G~~V= 8ir<T~>, (221)

is not merelyof heuristicvalidity but is thecorrectway.For it is a modifiedversionof

6(S+W)f6g,,,, 0, (222)

which includesthevacuum-polarizationpart of W as well as the effectsof real particleproduc-
tion. For the samereasonit is absolutelycorrectto cancelthe infinities of W by countertermsin
S. Only under conditionsof extremeenergiesor curvatures,whenW developsa very largeimagin-
ary part andparticleproductionis soexcessiveas tb becomemeaningless,doesthe semiclassical
conceptionembodiedin eq. (221)provide an inadequatedescriptionof the physics.

6.12. Isolationof thedivergencesby Schwinger’smethod

Let usturn now to the divergences.I shall first describe briefly Schwinger’s method [43] for
handling them. He beginsby rotatingthe integrationcontourof eq. (217) into the negative
imaginaryaxis,which is equivalentto making the replacements = —it. The function~2is real on
theimaginaryaxis.Thereforeif it haspolesin the lower half planethesemustbe symmetrically
distributedin both quadrants,andthe rotationprocesswill pick up the residuesfrom thoseon
the right. Theseresidueswill generallymakecontributionsto the imaginarypart of W andhence
thepoles(ormore complicatedsingularitiessuchas branchpoints)mustbe therewheneverreal
particleproductionoccurs.Keepingonly the real part,we have

ReL = (32ir2)‘g’/2 5 t3 exp [—m2t + ~Z(x,x, —it)] dt + termsarisingfrom multiple
o . geodesics. (223)

We seethat the infinities of W are confinedto ReW.
Schwingerisolatesthe infinities simply by expandingen aboutt = 0:

Ldj~ (32in2)~g’I2(f t_3em2tdt+ai(x,x)f t_2em2tdt

+[4a~(x,x)+a
2(x,x)] ft_i em2tdt}. (224)

Thecoefficientsof the divergentintegralscanbe determinedin astraightforward,if slightly te-
dious,mannerby taking repeatedcovariantderivativesof eqs.(200), (201)and(205),andmaking
useof the coincidencelimits (218). Onefinds

a1(x,x) (~— ~)R , (225)

The (T

1”) on the right hand side of this equation includes contributions from gravitons.
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a tx x~= — R RM~+ 1 R RMVaT + 1 (1 — ~ R 122\ ‘ / -iao MV j~ MVOT I” ;~

whereR
12,,0~andR12,, arethe RiemannandRicci tensorsrespectively.The termsin ~R comefrom

the scalarfield equation(150). All othertermsarisesimply from the failure of covariantdifferen-
tiation to be commutatitve;hencetheyrepresenta purely geometricalcontributionto thediver-
gences.It is immediatelyapparentthat cancellationof the first two termsinsidethe curly brackets
of eq. (224)by countertermsin the gravitationalactionis equivalentto renormalizationof the
cosmologicalandgravitationalconstants.The third term is of aform not normally includedin
the classicalaction.Termsof thesethreetypesare familiar to all workersin quantumgravity.

6.13. RelationofSchwinger’smethodto othermethods

What,now, is the relation of Schwinger’s method to that of Zel’dovich andStarobinsky?The
latterauthorsintroducedtheir methodin thecontextof a flat 3-space,so theywereableto select
a momentumvariablek as a label for their basisfunctions.Theirtechniquefor regularizingthe
stresstensormaybe summedup in the formula

= fT~e”g(k,x) d
3k , (227)

where

T~(k,x) 2 lim (T12~(u(m~klx), u*(m, klx))

— [I + a a 1 ~- T12V(u(nm,nklx),u*(nm,nklx)) , (228)
L a(n2) a(n2)2Jn

the dependenceof the basisfunctionson the rest massm beingexplicitly indicated.Parkerand
Fulling wereableto show that this formula is equivalent to a method of “adiabatic regularization”,
which theywereableto generalizefor applicationalsoto a classof curved3-spaces.In thelatter
methodeachterm in the mode-sumis comparedwith whatit would beif the time rateof change
of the metric weresloweddown andthe curvatureof 3-spacewerecorrespondinglydecreased.An
expansionis carriedout in inversepowersof the“slownessparameter”thatmeasuresthis decrease,
andthe first threeterms(of orders0, —2, and —4) arethrown away.ParkerandFulling showthat
the role of the slownessparameteris identicalwith thatof the parametern in eq. (228).

In the geometriesconsideredby the aboveauthorsa preferredsetof spatialcoordinatesexist,
andthe regularizationmethoddependson them.Furthermore,the regularizationis performed
modeby mode.Whatanalogousmethodcanwe possiblyadoptin the generalcase?Whatdo we
do whenthereis no obviousmodedecomposition?The answeris to split the pointsat which the
field operatorsappearingin T’~areevaluated.The infinities at oncedisappear(providedsplitting
in anull direction is avoided),andthe regularization(228)maybe carriedout eitherbeforeor
afterthe integration(227) is performed.Furthermore,rescalingof the variablek is permittedat
anystage.It is not difficult to seethat the regularization(228)is thenequallywell effectedby
leavingk alone,multiplying x— x’ by n’, andaffixing the factorn4 insteadof n~to the second
term.This proceduretranslatesimmediatelyinto the covariantlanguageof eq. (217).We haveonly
to reinsertthe term ic/2sinto the exponentof theintegrandandwrite (ignoring themultiple-
geodesicterms)
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Lreg — lip~ (32ir2Y~g’12f lim -~ [exp {i(a/2s—m2s)+ &2(s)}
0

— (1 + + 4 A2 exp {i(Aa/2s — m2s/A)+ ~(s)}] ds, (229)

the symbolA beingnow introducedin placeof n2. As long as a is different from zerotheoscil-
latory behaviorof theexponentialpreventsthe integralfrom divergingat the lower limit. Further-
mores in the secondterm maybe subjectedto the rescalings -* As,which thenyields

Lreg = — urn (32ir2 ) 1g1/2f lim .~ exp{i(a/2s — m2s)}[en(s)— (i + ~ ~) enQ~]

= — (32ir2 )~g’12f -~-exp (_im2s)[en(5) — 1 — ia
1s + (4a~+ a2 )~2]ds = L — Ldl~. (230)

Os

The Zel’dovich—Starobinskyscheme,generalizedin this manner,is seento yield exactly thesame
regularizationas Schwinger‘s.

Schwingerhaspointedout that his scheme,which maybe generalizedalsoto multi-loop proces-
ses(seeBogoliubovandShirkov [2]), is capableof regularizinganything,providedonly that inte-
grationover theparameters (which he calls a “proper-time”parameter)is reservedto the last. He
hasshownthat his schememay be regardedas a kind of ultimateextensionof thePauli—Villars
methodandclaims thatit is guaranteedto preserveeveryinvariance(e.g.,gaugeinvariance)that
is presentin the formal theory. It certainlypreservesgeneralcoordinateinvariance,as we have
seen,andhenceguaranteesthe conservationlaw (219).But thereis a questionwhetherit preserves
conformalinvariance.

6.14. Conformalinvariance

The stresstensorassociatedwith the field equation(150) is given by

P~ gh/

2 {4(l — 2~)[~,~]+ + (2~— 4)g12~g~? — ~[w~2~]++ ~12V[~,~oG]+

+~(R12V_4g12~’R)~p2_4m2gM~p2}. (231)

In the conformallyinvariantmasslesscase(seeCallan,ColemanandJackiw [6]) this reduces to

T12v~gh/2{2[~,,p~]+—g12”p;a~o~— ~ , (232)

which formally satisfies

(233)

in virtue of the field equations.Equation(233) also follows as a consequence of the conformal
invarianceof the action functionalfor this case:S remainsinvariantunderthe infinitesimal
changes

6g
12,, g,,,,6A,

13p —4p6A, (234)
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where6A is anarbitraryinfinitesimal scalarfunction. If we canshowthat W too is invariantunder
(234) it will follow that

gM”(6W/6g
12,,)2 0 , (235)

and hence

Treg12
12=0, (236)

providedthat the divergentpart that is split off from W is also conformally invariant.
The conformalinvarianceof W maybe provedformally as follows: Onefirst verifiesthat the

Riemanntensorandits contractionstransformunder(234)accordingto

6R
12,,~~R12,,076A — 4(g12aôX;pr+g,,~6A;120—gpr6A;pa—gVa

6A;~r), (237)

oR
12,,= — 4(26X;12v+g12,,OX;,,°), 6R = —ROA — 36X.12

12.

Onethenshowsthatwhenm = 0 and~ = 4 theoperator(191)hasthe particularlysimpletrans-
formationlaw

= —4 [g~1~Fg’/4, OA]+ . (238)

In virtue of the fact that

FG~’~= 0, G~’~F= 0, (239)

it follows immediatelyfrom eq. (213)that

6W=0. (240)

6.15. The Weyltensorand thegeneralizedGauss—Bonnetinvariant

Now theonly localgeometricalconformalinvariant thatcanbe constructedfrom the metric
tensorandits first andsecondderivativesisg112C

12,,~C’-”’°~(or functionsthereof)whereC12,,,,~.
is the lVeyl tensor*:

R12,,~,.— 4 (g120R + g,,~R12,,— g12~R,,0— g,,0R~~)+ 4 ~ — g12~g,.,0)R , (241)

= C12,,0~6A. (242)

This implies that the only countertermthat canbe usedto cancelthe divergencesof Wandat the

sametime preservethe conformalinvarianceof the theorymusthavethe form

const.x fgu/2 C12,,arC
12~°7d4xconst.xfgh/2 (RPVGTR12VOT— 2R

12,,R
12~+ 4R2)d4x . (243)

This integralmaybe simplified by making useof the well-known fact (seeChern[11, 12]) that

the integral

fg1/2(R~,,
0~R12var— 4R12,,R

12~ +R2) d4x , (244)

* The Weyl tensorvanisheswheneverspacetimeis conformally flat. It alsosatisfies~‘12GV° 0.
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is a topologicalinvariant,independentof thegeometry,for any 4-manifold.(It is an analogof the

well knownGauss—Bonnetinvariant for 2-manifolds.)Thus
const.xfgh/2C

12,,0~CM1~~0Td4x= const.Xfgh/2(R12,,R12v— 4R
2) d4x + const. (245)

6.16. Apparentfailure ofconformalinvariancein Schwinger’smethod.Resolutionof thedifficulty

Referringto eqs. (224), (225)and(226), we seethat the threedivergenttermsisolatedby

Schwinger’smethodin theconformally invariantcasetakerespectivelythe forms

const.xfgh/2 d4x, 0, and (246)

const.xfgh/2 (R
12,,arRMVGT — R12,,RMV+ R.1212)d

4x const.X fg1/2(R
12,,R12v— 4R

2) d4x + const.

The last of thesetermshasexactly the form (245).The secondonevanishes;hencethereis no re-
normalizationof the gravitationconstant.But the first term,which renormalizesthe cosmological
constant,is not conformallyinvariant anddoesnot vanish.How do we dealwith this fact?

Oneway is to adopt thedimensionalregularizationmethod(see‘t Hooft andVeltman [33]). In
this methodthe cosmologicaltermautomaticallyvanishes.But it doessobecausea specialcon-
vention is implicitly adoptedin theanalyticcontinuationto complexdimensions.Nouri-Moghadan
andTaylor [37] haveshownthat as far as divergenttermsareconcerned,this analyticcontinua-
tion is inherentlyambiguous.Furthermore,in its presentform the methodis applicableonly to
Lorentzor de Sitter-invariantquasi-linearizedtheories0.

A more direct approachis clearlydesirable,andthe lesssophisticatedthebetter.As always,
the point-splitting methodsuggestsitself: If the term in ia/2sis reinsertedinto the exponentof
the integrandof eq. (217)wehave(neglectingthe multiple-geodesiccorrections)

D’12 1
L = — li,m 2 5 — exp {i(a/2s—m2s)}~ ds

x-’.x32in ~ s3

= l~imi — [g’/4(x) G(x,x’)g1/4(x’)1 (seeeq. (206))
x-’x ôa

= — l~m4 -~—[g’14(x) G~’~(x,x’)g114~x’)] (castingout the iO’s)
x-’x

D’12 1 m2 m4
= lim — — —— —~ (7+4 lnIm2a/2I)+~m4

x-~x8in2 a2 2a 4

+a
1 [I ~-~_ (7+4 lnlm

2a/21)_~m2]_ (4a~ +a
2)[4(i+4lnIm

2a/21) _~ ]+... }. (247)

In the final expression,which is derivedfrom eq. (212),only the termsthathave counterparts in
the divergentLagrangian(224) areshown.The first line insidethe curly bracketsobviouslycor-

* An extensionof the method to arbitrary background geometrieswould certainly be of interest.There is a thesistopic for some-

body.Theextensionto deSitterspacetimehasonly recentlybeenachievedby CandelasandRaine(privatecommunication).
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respondsto the cosmologicalterm.It is the only term that survivesin flat spacetime.Thereforeit
mustyield the scalarversionof the vacuumstress(3 1). The way it doesso is instructive.Let e12 =

x12 — x’’ be aconstantcoordinatedisplacement.Whenx andx’ areclosetogetheronemaywrite
a = 4g

12,,e’~’e”.Whenm = 0 the “cosmological”part of W thereforetakesthe form

Wcosm = fgu/2~12,,e12eV)_2d4x. (248)

This expression,dependingas it doeson the frameselectedby e
TM, is not coordinateinvariant. It. is

however,conforinally invariant andyields a tracelesscontributionto <TMP):

OWcosm g’~’2
2~ =-___- [g12V(.gpf*c13)2 _4e12ev(g~e*ea)_3] (249)6g

12,, 2ir
2

In a local Minkowski frame,with the choice(~12)= (A~,0, 0, 0), expression(249)is identical,
apartfrom thedegrees-of-freedom-factor2, with expression(3 1). Underthespatial-averaging
methodof Fulling andParker[25], which yields analternativeregularization,onehaseffectively
(eu?) = diag (0,4A2, 4A2, 4A2), producingan expressiondiffering from (31) by a factor

The lessonto be learnedfrom this is thatin dealingwith thedivergentpartsof W onemust
adoptdifferentproceduresdependingon whetheronewantsto display(formally) coordinatein-
varianceor conformalinvariance.In eithercasethe finite Wreg that is left behindby Schwinger’s
method,afterthe infinities havebeensplit off, is bothcoordinateinvariant andconformallyin-
variant.Explicit calculations[13] showthat similar resultshold for the masslessspin-4 field and
the electromagneticfield, bothof which areconformallyinvariant.In eachcasethe gravitation
constantremainsunrenormalizedandthe logarithmicallydivergentpart of W takesthe form
(245). The only noteworthydifferencebetweenthe fermionandbosoncasesis that the cosmo-
logical termshaveoppositesigns0.It shouldbe mentionedthat in order to obtaintheseresultsin
the electromagneticcaseonemustincludecontributionsfrom the fictitious quantawhoseformal
presenceis necessaryto securegaugeinvariance(seeDeWitt [20]). In calculationsin Minkowski
space(e.g.,standardquantumelectrodynamics)thesequantamaybe completelyignored.

6.1 7. Particleproductionandvacuumstressin conformallyflat spacetime

Fulling, ParkerandHu [26] havestudiedthe conformallyinvariant scalarfield in cosmological
modelsof the Kasnerand Robertson—Walkertypes.Their analysisof the stresstensorin these
modelsconfirms a fact thathadbeennotedearlierby Parker[38], namely,that thereis no pro-
ductionof conforniallyinvariantmasslessquantain Robertson—Walkeruniverses.This resultmay
be understoodformally as a consequenceof eq. (240). Every Robertson—Walkeruniverseis con-
formallyequivalentto anEinsteinuniverseof constantradius.The valueof W for the two must
thereforebe the same.But an Einsteinuniverseis static.ThereforeTm W = 0 (noparticleproduc-
tion) for both.

Fulling,ParkerandHu go on to assert,however,that thevacuumstresstensoritself, i.e.,
20W/6g

12,,,vanishesin theseuniverses.Suchan assertionmight seemto follow from the fact that
* This is a generalrulefor fermionversusbosonfields. Zumino [54]hasshown thatin a supersymmetrictheorythe sumof all

contributionsto the cosmologicalterm vanishesasaconsequenceof this rule. Zumino’s resultholds to all ordersin thesuper-
symmetricinteractions.
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theseuniversesareconformallyflat andthatoneexpectsWreg = 0 whenRM,,G.,. = 0. In point of
fact, however,Wreg cannotbeassumedto vanishmerelybecausespacetimeisflat. For example,
considera static flat universefor which 3-spacehasthetopologyR2 X S1.The analysisof the
vacuumstressin this universeis almostidenticalwith thatof the Casimireffect.The vacuum
stressis nonvanishinganddependson the circumferenceof theS1cycle.But thedetailedderiva-
tionsandargumentsof the aboveauthorscanbe paralleled,mutatismutandis,in this case,leading
to an oppositeconclusion.Their conclusionswhen 3-spacehasthetopologyS3 mustthereforeal-
sobe regardedas suspect0.In generalWreg maybe safely inferredto vanishonly whenspacetime
is conformallyflat, asymptoticallyflat, andhomeomorphicto Minkowski space.

6.18. The infraredproblem

Mention mustbe madeof the infraredproblemthat ariseswhen m = 0. Whenm# 0 theintegrals
insidethe curly bracketsof eq. (224)divergeonly atthe lower limit. This limit correspondsto the
ultraviolet limit A -+ °°. Whenm = 0, however,thethird integral divergesat the upperlimit as well.
This is an infrareddivergence.As hasbeenpointed out by Fulling andParker[251 this divergence
shouldnot be includedin Ldjv, for otherwisea correspondingdivergencewould be introducedin-
to Wreg. Whatonemustdo is to introducean uppercutoff, T. The precisevalueof T is arbitrary.
If we changeT to T’ the resultwill be equivalentto changingthe renormalizedLagrangianfor the
classicalgravitationalfield by an amountequalto

~Lren = (32ir2 )‘ ln(T’/T) g”2 [4a~(x, x) + a
2 (x, x)]. (250)

In the conformallyinvariantcasethis correspondsto a changein the renormalizedclassicalaction
givenby

= n( ) I l/
2(j~ RM~— ‘R2~d4x —~W ‘251

ren 2 .1 g ~ Mv / reg~ V

l92Oir

What we are doing here is writing

S+ W=Sren + Wreg , (252)

andthenshifting integralsof the form (25 1) arbitrarily backandforth betweenS~andWreg. The
functionalSren hasto be determinedby experiment.The arbitrariness(251) indicatesthat Sren

cannotbe takensimply in the traditionalclassicalform (16in)’fg’12Rd4x(with G = 1) but must
be assumedto be00

Sren = (l6irylfghhl2Rd4x + (l6inp2)’ ~g1/2(R
12,,R12V— 4R

2)d4x. (253)

Experimentalrelativity is not completeuntil the valueof the constant~.zhasbeendeterminedcor-
respondingto a previouslychosencutoff T. A lower boundon i maybe obtainedby considering
the celestialmechanicsof the solarsystem.The secondterm of (253) leadsto fractionalcorrec-
tions in themotionsof the planetsof ordere12’ wherer is thedistancefrom the sun.The cor-
rectionis biggestin the caseof mercury,for which r ‘-~ 2 X iO~~absoluteunits. Assumingthat the

~Noteadded.Larry Ford a
1id1Ya.Zel’dovich (privatecommunications)haverecentlyshownin this casethat (Treg

12”)

(hc/480ir2R4)diag(1, ~, ~, ~) in a local “rest” frame,whereR is theradiusof the universe.
~‘~‘ The renormalizedcosmologicalconstantis assumedto bezero.
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motionsof the planetsareknownto conformto the choicej.c~= 0 to an accuracyof somewhere
betweenonepart in l0~andonepart in 1010 (the final result is quite insensitiveto the precise
value)we obtain ,u ~‘ 2 x 1 O~absoluteunits. Henceevenif the coefficient in front of the second
integralin (253) is as big as l0~~this term canhaveno possibleeffect on planetaryastronomy.A
cutoff T correspondsto a maximumwavelengthof order T’12. If the sun is regardedas the source
of thegravitationalfield the naturalmaximumto takeis the radiusof the sun (—j iO~~absolute
units). But evenif the maximumwavelengthis merelyassumedto lie somewherebetweenthera-
dius of theproton (—‘ 1020)andthe radiusof the universe~ 1062)the resultinguncertaintyin
Sren (expression(251))makes,at the level of thesolarsystem,an utterlynegligible contribution
to the termin ,.z2

In thenon-conformally-invariantmasslesscasethe infraredsituationis somewhatdifferent. In
that case(which includesthe quantizedgravitationalfield) the scalara

1 (x, x) doesnot vanish
identically. Insteadit playsa role analogousto m

2 in the integral(217)andcanprovideanatural
infraredcutoff. It leadsto termsof the form a

2 ln[R I in the effectiveLagrangianL. Termsanalo-
gousto this, but not fully covariant,havebeenfoundby Fulling andParker[251 andby Ginzburg,
Kirzhnits andLyubushin [29].

In the casem~ 0 the renormalizationprocedureis morestraightforward.Onesimply dropsall
the termsappearingin (247) from the effectiveLagrangianL. The unwrittentermsthat remain,be-
ginningwith aterm in m

2(4a~+ a
1a2 + a3), arefinite andcovariant.They areanalogousto the

Uehling andEuler—Heisenbergcorrectionsto the Maxwell Lagrangianin quantumelectrodynamics.
Being the termsof an asymptoticexpansionin inversepowersof m

2 theycanat bestyield only an
approximationto Wreg. The approximationwill be a goodoneprovidedthe componentsof the
Riemanntensor,in quasistationaryorthonormalframes,aresmallcomparedto m2.An approxima-
tion to <Tm) canthenbe obtainedby functionaldifferentiation.

6.19. Isolation ofmode-sumdivergencesby thepoint-splittingmethod.

When the componentsof the Riemanntensorarenot smallcomparedto m2,or whenm = 0,
onemusthaverecourseto othermethodsfor computing<Tm>. Usually this will involve isolating
the infinities from the mode-sum(12) directly. Becausethe basisfunctionsin the mode-sumcan
be computedonly for avery restrictedclassof geometries,it will generallynot be possibleto com-
pute<T~)by takingthe functionalderivativeof Wreg with respectto the metric.Thereforemuch
of the formal apparatusof this sectionwould seemto be not very practical.Fortunatelythis is not
so.Thereis a direct way of covariantly identifying the divergentpartsof <T~)that is applicableto
anygeometry,restrictedor not.

The methodis basedupon the observationthat, in virtue of eqs. (174), (183)and(231),one
maywrite

2g’12 ~ = lim [4(1 — 2~)G(l).Mv’+(~— ~ )gMVG(i) a’ — ~G(O.12’v’+ ~gM~G(~);,,,0’
6g

12,, x’~x .

+ 4~(R
12V_4gMPR)G(l)— ~ m2gM~’G(’)]. (254)

Onemaythereforeinserteq. (212) into (254),carryout the indicateddifferentiations,seta~=

— 02 = eTM, andproceedas in the analysisof expression(249). Beforeonedoesthis,however,one
mustreplace~h/2 anda

1 in (212)by their expansions
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~‘/2(x, x’) = 1 + ~RM,,a~a~—

+ (~gR~wRar+ ~R*
12~vRaa~r+ g~RMp;gr)a~a~a~a~+ ... (255)

a1 (x, x’) = (4 — E)R —4(4 — ~)R;MG~ + [— ~R 12~R,,a +~Rpa,,pRaP+ ~Rap.y12R~~v

+j~R12,,;0a+(~_4~)R;12v]a~’a~+ .-. (256)

which arederivableby the methodsusedto get (225)and(226).Thenafterdifferentingonemust
makeuseof the expansions

&h~~ g’~ — 4R12~a~a!
3+ ... (257)

a~’=—g’~”_4RM~a~a~+ ... (258)

which arederivedSimilarly.
The resultingexpressionwill be given elsewhere,in connectionwith a studyof the stresstensor

nearablackhole. It is bothcomplicatedand,becauseof the many�M‘s thatappearin it, very
framedependent.However,the framedependenceis confinedentirely to termsindependentof
the Riemanntensor,linear in the Riemanntensoror its first or secondcovariantderivatives,and
quadraticin the Riemanntensor.Thesearepreciselythe termsarising from WdW.When all such
termsareaddedtogetherthe result is 2g’12OW~jv/Og~,,.When the geometryis givena priori, eva-
luationof the terms,componentby component,is straightforward.Moreover,thereis no particular
difficulty in choosinga convenientpoint-splittingvector~Mfor useboth in thesetermsandin the
mode-sum (12). Therefore the expression found for 2OW~lV/Og~,,maybe subtractedcomponent
by componentfrom the mode-sum.Thesubtractionmaybe carriedout in anyconvenientcoor-
dinatesystem.The resultwill be independentof the �M’Sandcovariant.

Many of the eM~dependenttermsin 2OWdjv/&g~,, are finite andhenceanalogousto the puzzling
“nor’ tensorial”termsfoundby Fulling andParker[25]. It mayverywell provepossibleto estab-
lish ail identificationbetweenthe termsfoundby the two methodsandhenceto resolvethediffi-
culty thatthesetermshavepresentedup to now. Thereis, however,a differencein the methodof
regularizationadoptedin thetwo casesthatshouldbe pointed out.Fulling andParkeruseamo-
mentumcutoff, whereasthe point-splittingmethodadoptedherecorresponds(at leastfor time-
like splittings) to an energycutoff. If the two cutoffs aredenotedby K andA respectivelythey
will be relatedby A2 = K2 + m2.Thismayaccountfor the fact that the ~M-dependentterms
found in the presentmethodinvolve powersof in no higher thanthe fourth, whereasFulling and
Parkerobtainalsotermsin m6 andm8.

6.20. Futureoutlook

With the computationof single-closed-loopprocessesmoreor lessundercontrol onemaynow
askwhathappenswhenmulti-loop calculationsareattempted.In the first placesuchcalculations
areexceedinglycomplicated.This is becausewhenonegoesaftermulti-loop correctionsto the
classicalgravitationalactiononemust,to be consistent,includegravitons,andthe complexityof
graviton-gravitonverticesis such asto makestrongmenquail. But thereis amorefundamental
problem,which raisesthemost crucial issuein the quantumtheoryof gravity.Thistheory is not,
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by standard criteria, renormalizable. Amplitudes or matrixelementsthatinvolve more thanone
loop aremoredivergentthan thoseinvolving singleloops.Additional countertermsarerequired
to disposeof the infinities, andtheseareof increasinglycomplicatedtypes.Use of acounterterm
of the type(246), to disposeof the logarithmicdivergencesin the single-loopcase,is already
dangerous. Such a term in the classicalactionleadsto field equationsof the fourth differential
order, and to all the.ghostdifficulties associatedwith such equations.

The painful factsarethese:Physicistshavecometo believe,sinceEinstein,in the curvatureof
spacetime.Curvatureleadsto uncomfortabledivergencesalreadyin the WKB approximation
(single closedloops).Nevertheless,the WKB approximationmusthavesomevalidity. The Casimir
effect is an example,andit hasbeenmeasuredin the laboratory.At the sametime we cannotbe-
lieve that theWKB approximationis the endof thestory.It is only an approximation.

It maybe, as manyhavespeculated,thatquantumgravity containsits own cutoff — thatit is
actually finite. Heroicattemptshavebeenmadeto prove this by summinginfinite classesof multi-
loop amplitudes.Unfortunatelytheseattemptsremaintodaybothambiguousand ultimately frame
dependent(gaugedependent).At the presenttime only two possibleproceduresseemfeasible,
evenif computationaldifficulties are ignored:(I) Accept the infinities astheycome,orderby or-
der,but rigorouslykill them all off by counterterms,savefor the classicaltermfg1~’2Rd4x(with
the modification embodiedin eqs.(251) and(253) in the casem = 0); or (2) treatthe renormal-
ized gravitonpropagatorobtainedin the WKB approximationas the zerothorderpropagator,and
use it in theinternal linesof all multi-loop graphs.Becauseit is less singular at small distance than
the “bare” propagatorit turnsout that all higher-orderamplitudeswill divergeno worsethan
quartically in the energycutoff A. Whethereithermethodmakesultimatesenseis for the future
to determine.

A final comment is in order concerningthe useof “in” and“out” regions.It shouldbe clear
by now that the divergences(at leastin the WKB approximation)dependonly locally on the
spacetimegeometry.They involve only the metric tensorand its first four derivatives. It does
not matterwherethe “in” and“out” regionsarelocatedor how big theyare;the form of the
divergencesis alwaysthe same.Henceit cannotmatterif theseregionssimply disappear.In the
total absenceof Killing vectorsit may,of course,be difficult to constructameaningfulor useful
state-vector space. But the subtractionsintroducedhereshouldserveto regularizeanymatrix
elementof TMV no matterhow the statesaredefined.

I wish to express my appreciationto ProfessorDennisSciamafor the hospitalityextendedto
meby the AstrophysicsDepartmentof the University of Oxford wherethis paperwas begun. I
haveprofitedby conversationswith manypeopleincluding especiallyLarry Ford,Stephen
Fulling, GaryGibbons,StephenHawking, ChristopherIshamandWilliam Unruh.
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