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We study the constraints placed by quantum mechanics upon the lifetime of a black hole. In 
the context of a moving-mirror analog model for the Hawking radiation process, we conclude that 
the period of Hawking radiation must be followed by a much longer period during which the rem- 
nant mass (of order m p )  may be radiated away. We are able to place a lower bound on the time 
required for this radiation process, which translates into a lower bound for the lifetime of the 
black hole. Particles which are emitted during the decay of the remnant, like the particles which 
comprise the Hawking flux, may be uncorrelated with each other. But each particle emitted from 
the decaying remnant is correlated with one particle emitted as Hawking radiation. The state 
which results after the remnant has evaporated is one which locally appears to be thermal, but 
which on a much larger scale is marked by extensive correlations. 

I. INTRODUCTION 

The theories of gravitation and of quantum mechanics 
form two of the greatest achievements of twentieth cen- 
tury physics. Although a field-theory generalization of 
quantum mechanics can describe the strong, weak, and 
electromagnetic interactions, there is as yet no fully 
developed quantum theory of gravity. Recent develop- 
ments in the theory of strings1 offer candidates for such 
a theory, and it is certainly timely to consider the para- 
doxes which arise when one considers the confrontation 
between quantum mechanics and gravity. 

One such paradox was pointed out by Hawking2 in the 
course of his seminal work on black-hole radiation. 
Hawking examined the evolution of a quantum field in 
the background metric of a classical black hole and 
discovered that particle creation should take place. The 
emitted particles were found3 to build a thermal spec- 
trum and to be uncorrelated among themselves. As the 
hole loses mass through this mechanism, its temperature 
rises and Hawking speculated4 that this would lead to 
the explosive disappearance of the black hole shortly 
after its mass reached a value on the order of the Planck 
mass mp. If this were to happen, there would be left 
behind a residue of thermal radiation, which is a mixed 
state in quantum-mechanical terms. Since the original 
black hole might have formed from a dust cloud de- 
scribed as a quantum-mechanical pure state, the black- 
hole explosion could convert a pure state into a mixed 
state. But such a conversion would violate the funda- 
mental tenets of quantum mechanics, and this led Hawk- 
ing to suggest that these tenets must be revised. 

We will adopt a less radical view in this paper in as- 
suming that a quantum-mechanical description is always 
possible and asking what aspects of Hawking's scenario 
are thereby violated. We find that the black-hole rem- 

nant of mass m p  cannot disappear explosively but must 
slowly dissipate its remaining energy. Appealing to a 
mechanical analog of the Hawking process, we are able 
to place a lower bound on the lifetime of the black-hole 
remnant. And assuming that this bound is saturated, we 
can fully characterize the radiation which remains after 
the remnant has evaporated. 

The state which results from our model of black-hole 
evaporation is one which is locally thermal. Radiation 
emitted during the Hawking phase is locally thermal 
with a temperature which increases as the mass of the 
emitting black hole decreases. Radiation emitted from 
the decaying remnant can also be locally thermal but at  
a much lower temperature. There are no local correla- 
tions among the emitted particles, but each particle 
emitted during the Hawking phase is correlated with 
some particle emitted from the decaying remnant. These 
long-range correlations are a primary characteristic of 
the state which results from the complete evaporation of 
a black hole. The state is an unusual one, but still a legi- 
timate quantum-mechanical state. The time required to 
form this state is large, and the length of time required 
for the black-hole remnant to decay is always much 
larger than the time required for the original black hole 
to decay (via Hawking radiation5) and form the rem- 
nant. Thus one can conclude that the period of Hawk- 
ing radiation is a relatively brief period in the life of a 
quantum black hole. 

The mechanical model upon which we rely for an in- 
tuitive grasp of the Hawking process is one which has 
been studied extensively in the literature. It involves a 
quantum field formulated upon a two-dimensional flat 
spacetime which is bounded by a moving, reflecting wall. 
In the preceding paper7 we have reviewed the salient 
features of this model and argued its suitability as an 
analog to the Hawking process. In the following section 
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we collect and generalize the results of our preceding pa- 
per. In Sec. I11 we pose, in the context of our model, 
the question of what must happen if a black hole radi- 
ates away all its mass. We answer the question by estab- 
lishing a lower bound on the lifetime of the black hole 
and by making a simple characterization of the final 
state which results after the hole has disappeared. We 
argue in Sec. IV that our arguments may be applied with 
equal force to realistic models of gravitational collapse in 
four-dimensional spacetimes. A final section contains 
some general remarks on the implications of our results 
for the structure of quantum theories of gravity. 

11. MOVING MIRRORS 

The phenomenon of particle production in the chang- 
ing gravitational field of a collapsing massive object can 
be mimicked by a simple model6 in two-dimensional flat 
spacetime. To this end we consider a free quantum field 
constrained by a movable, reflecting boundary. For sim- 
plicity we assume that the quantum field describes mass- 
less scalar particles. The trajectory of the moving mir- 
ror can be described in terms of null cordinates u and u 
by the equation 

If the mirror undergoes an acceleration, field quanta will 
be produced a the mirror surface, producing an energy 
flux 

( T,, ) = 
1 _ _ ( p 1 ) l / 2 a , 2 ( p ~ ) - l / 2  . (2.2) 

125- 

By an appropriate choice6 of the function p ( u  1, this flux 
can be made to match the radial flux from a collapsing 
mass, as predicted by the arguments of Hawking.' 

In either Hawking's model or the moving-mirror mod- 
el, particle production can be explained in terms of a Bo- 
goliubov transformation relating zero-particle states 
defined on null surfaces 9- and 9+ which lie, respec- 
tively, in the distant past or distant future. The zero- 
particle state on 9- is naturally interpreted as the vacu- 
um state of the field d. Viewed from Yf ,  this state has 
the form 

Here 100) denotes the zero-particle state on 
Y f  = 92 U 9 2 ,  and U is the Bogoliubov transformation, 
which populates / 00) with correlated pairs of right- and 
left-moving particles. 

If the trajectory function p (u  has the simple form 

then the Bogoliubov transformation can be diagonalized, 
and the correlations on 9+ can be exhibited in explicit 
detail. This procedure has been carried out in the previ- 
ous paper.' The physical picture which was developed 
in that paper will be of considerable use in what follows. 
Consider a wave packet which leaves the mirror in the 
vicinity of the ray u. The outgoing wave packet can be 
traced back to a packet of identical shape in terms of a 

variable 

which corresponds to the inverse of Eqs. (2.1) and (2.4). 
The singularity in V a t  u = O  corresponds to the fact that 
the trajectory (2.4) has a horizon, in the sense that rays 
with u > 0 miss the mirror entirely. 

The sharp boundary at u = O  is not without conse- 
quence for the wave packet discussed above. If we per- 
form an analytic continuation in u, we can examine the 
form of the packet in the region u > O .  I t  does not van- 
ish, but exhibits the same form in terms of a variable 

as it did in u or V. The amplitude of the u > O  com- 
ponent relative to the u < O  component is e'""'", with a 
sign in the exponent which depends upon the sense of 
the continuation around the singularity at u =O. This 
sign can be related to the relative signs of the energies of 
the wave packets on 9+ and 9-, as we have described in 
our previous work. Here we will simply note that the 
variables V and W provide a convenient means for di- 
agonalizing the Bogoliubov transformation. The state 
[Eq. (2.311 which results on Yt=3';U92 contains 
correlated left- and right-moving quanta. Specifically, a 
right-moving packet constructed in terms of the variable 
u is paired with an identical left-moving packet con- 
structed in terms of the variable W. 

The width of the correlation (in u or W) is of order 
K-'. Furthermore, the dominant frequencies of quanta 
on 92 are of order K. These observations allow us to 
generalize from the trajectory (2.4) toward a more realis- 
tic analog to the Hawking process itself. The trajectory 
(2.4) corresponds to a constant Hawking temperature 

Since the Hawking temperature actually depends upon 
the mass of the collapsing object 

this temperature should increase as mass is gradually 
lost to Hawking radiation. In terms of our moving- 
mirror model, we have a local acceleration 

which induces correlations over a region in u of width 
K-'. Since the dominant wavelengths of the emitted 
quanta are also of order K-I, it follows that our qualita- 
tive arguments about the structure of the state on Yt 
are unaffected as long as 

This inequality demands simply that the local tempera- 
ture should not vary appreciably over the de Broglie 
wavelength of the emitted quanta. Let us now allow M 
to be a function of u and identify the rate of mass loss 
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with the energy flux (2 .2 ) :  

In writing this equation we have used Eq. ( 2 . 9 )  and have 
dropped a total divergence from Eq. ( 2 . 2 )  to render the 
energy flux explicitly positive. If now we combine Eqs. 
(2.71, (2.81, and (2 .1  l ) ,  we can deduce the explicit form of 
M ( u ) :  

This form is valid only as long as 

since when M ( u )  approaches m p ,  quantum gravitational 
effects are likely to invalidate the semiclassical expres- 
sion ( 2 . 8 ) .  Given our identification 

we see that the inequality (2 .10)  follows from the 
presumed inequality (2 .13) .  

Equations (2 .14)  and (2 .12)  specify the local accelera- 
tion K (  u  ) of the mirror which correctly mimics the parti- 
cle production of the Hawking process. Introducing this 
acceleration in Eq. (2.91, we can compute the mirror tra- 
jectory in the analog model for the period 

The last inequality is introduced to enforce the condition 
( 2 . 1 3 ) .  The differential equation for p l ( u  1, Eq. ( 2 . 9 ) ,  can 
be integrated to obtain 

Subject to the condition (2 .13) ,  this can be integrated 
again to give 

Note that using Eqs. (2.141, ( 2 . 1 6 ) ,  and (2 .17) ,  we can 
construct the ratio 

This ratio has the same functional form as for a trajecto- 
ry ( 2 . 4 )  with constant acceleration, a fact which we will 
exploit in the following section. Note further that in 
any region of u  of width K - ' ( u  * ) about some central 
value u  *, one can approximate 

This implies that at any position along the trajectory 
p ( u ) ,  the apparent horizon-or apparent asymptote of 
p  ( u  )-is at u =O. This again is the same as for the tra- 
jectory (2 .4 ) .  I t  implies that the variables V and W of 
Eqs. ( 2 . 5 )  and ( 2 . 6 )  remain relevant for diagonalizing the 
Bogoliubov transformation of the moving mirror, even 

when the acceleration is nonuniform. 
The physical picture which results for the spacetime 

slice 0  j u  u  is as follows. In the vicinity of a ray la- 
beled by the null coordinate u ,  there are particles 
streaming out from the mirror which have energies of 
order ~ ( u  ). These particles have no local correlations 
and appear locally to originate from a thermal source of 
temperature K (  u  )/27-r. These particles are, however, 
correlated with left-moving quanta. The dominant 
correlations7 involve quanta in the vicinity of a ray 

which have frequencies of order 

This follows from the fact7 that a given right-moving 
wave packet is correlated with a left-moving packet 
which is narrower by a factor p l ( u ) .  In the next section 
we will investigate the field configuration for u  > u  , and 
investigate the fate of the virtual quanta described by 
Eqs. (2 .20)  and (2 .21) .  

111. LATE-TIME BEHAVIOR 

For u  >>u ,, Hawking's formula (2 .8 )  no longer applies 
and we can no longer determine the explicit form of the 
trajectory p  ( u  ) .  We can, however, deduce the asymptot- 
ic form that p  ( u )  must possess and join the asymptotic 
trajectory on to the trajectory (2 .17)  subject to the con- 
straint of energy conservation in the system modeled by 
the moving mirror. This constraint is strong enough to 
provide a lower bound on the lifetime of the remnant 
found at time u  

Let us assume that the remnant can radiate away its 
entire mass in some finite-time interval to leave behind a 
flat region of spacetime. In our analog model this corre- 
sponds to a mirror which is stationary. Indeed, p " ( u )  
must vanish so that particle production can cease and 
p ' ( u )  must equal unity so that rays passing through the 
region once occupied by the hole no longer suffer any 
red-shift. At u  = u  ,, the red-shift factor 1 / p ' (  u  ) is very 
large, so there must be a period of deceleration which 
follows u  and allows p ' ( u  ) to approach its asymptotic 
value. This deceleration cannot be very great, however, 
since the amount of energy radiated in the course of this 
deceleration must be equal to  the available mass 
M ( u  )=  M ,  . The trajectory which maximizes the al- 
lowed deceleration can be found with the aid of Eq. 
( 2 . 2 ) .  Demanding continuity of p  ( u )  and p ' ( u )  at 
u  = u  one obtains a trajectory 

with a constant deceleration K~ and parameters 

and 

We will ignore the effects of the discontinuity in p " ( u )  
which results from joining the trajectories (2 .17)  and 
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(3.1) at  u = u l .  Smoothing the trajectory to eliminate 
this kink would affect only those few quanta emitted 
very close to u 

The trajectory (3.1) attains the final value p ' =  1 at  

During the period u 5 u 5 u2  the mirror trajectory (3.1) 
produces a constant flux of particles with a total energy 

This quantity should equal the mass at u = u whence 

Note that this acceleration is much smaller than the 
Hawking acceleration at  u = 0: 

Therefore, the temperature at which the remnant evapo- 
rates is much smaller than the temperature of the Hawk- 
ing radiation. Consequently the time interval 

during which the remnant mass M I  is released, is much 
longer than the interval u l  during which the remnant 
formed. 

We would like next to display the structure of the 
state which results after the mirror has come to rest. To 
do this we need only trace the path of the virtual left- 
moving quanta discussed in the previous section. There 
we argued that, correlated with the real quanta emitted 
at  some u < u there are virtual quanta moving near the 
ray u = - p  ( u )  with energies of order K(  u ) /p l (  u ). These 
quanta will strike the mirror during the decelerating 
portion of its trajectory at  a time u * > u such that 

We assume that 

so that we can neglect the constant term in Eq. (3.1). 
This allows us to write the red-shift factor at  u * in the 
form 

where we have invoked Eq. (2.18) to relate p ( u )  and 
p l (u ) .  I t  follows from Eq. (3.11) that, following their 
reflection from the mirror, the virtual quanta should at- 
tain energies of order K,. These quanta correspond to 
the real quanta emitted in consequence of the mirror's 
deceleration. Quanta emitted in the period u 5 u 5 u2  
are locally thermal, with a temperature 

But each of the quanta emitted in this period is correlat- 
ed with some quantum in the Hawking flux. Particles 
emitted in the vicinity of u * are correlated with particles 
at u, where u * and u are related by Eq. (3.9). The width 
of the correlations extends over distances of order K2- '  

about u * and K - ' ( u )  about u, as discussed in our previ- 
ous work.' Note that u * and u are typically very widely 
separated. Therefore, the final state of our moving- 
mirror system is characterized by correlations over very 
large distances, as illustrated in Fig. 1. 

These correlations permit the final state of the scalar 
field to be, just like the initial state, a pure quantum 
state. Locally the state appears to be thermal and hence 
a mixed quantum state. But although there are no local 
correlations, there are, as we have seen, extensive long- 
range correlations. This is an unusual state. More typi- 
cally one expects major short-range correlations and 
vanishing long-range correlations. Here the situation is 
reversed. We conclude that, within the context of the 
moving-mirror model, evaporation of a black hole does 
not induce the evolution of a pure quantum state into a 
mixed state. Rather, it produces a pure state with 
unusual long-range correlations. In the following section 
we will argue that similar conclusions may be reached in 
the realistic case of a collapsing massive object. There 
the correlations may be viewed as a consequence of the 
black hole's ability to induce large red-shifts and large 
time dilations for particles which pass close by it. 

IV. GENERALIZATIONS 

In the previous section we have deduced the structure 
of the state which results in the moving-mirror analog of 
the total evaporation of a black hole. Here we would 
like to generalize these results so that they might be ap- 
plied to the realistic problem of a collapsing massive ob- 
ject. To do so, we first note some general features of the 
picture developed in the previous section. We had a 

FIG. 1. Trajectory of the moving mirror. Quanta emitted at 
u are correlated with quanta of a much lower energy which are 
emitted at u *.  
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remnant of mass M 1 ,  which decayed in a time u - u 
with the emission of 

uncorrelated quanta. An emitted particle has a typical 
energy of order K* and hence can be formed on a time 
scale no shorter than K ~ - ' .  The minimum time required 
for the emission of N uncorrelated quanta is thus 

We can compare this with 

Therefore, the origin of a lower bound on the lifetime of 
the remnant can be traced to the need for emitting A' un- 
correlated low-energy quanta. Each of these quanta is 
correlated with some quantum in the Hawking flux, so 
we can regard N equally well as the number of quanta 
emitted in forming the remnant. Indeed, from Eqs. (4.1) 
and (3.6) and Eqs. (3.3) and (2.161 we have 

During the interval 0 < u 5 u  the particle flux has the 
form 

Upon integration, this expression reproduces Eq. (4.4). 
We can now use the moving-mirror model to describe 

the decay of a black hole of mass M o  >>mp. The spatial 
coordinate of the analog system assumes the role of a ra- 
dial coordinate for the metric which describes the col- 
lapsing system. Through the Hawking process the hole 
radiates (locally) thermal quanta to reduce its mass to a 
value M 1 ,  with m p  <<MI <<M,. The real quanta radi- 
ated in the Hawking process are correlated with virtual 
quanta falling toward an apparent horizon. When the 
remnant M1 has formed, this horizon will lie at a radius 

If the horizon is to disappear, the virtual quanta must be 
radiated as real quanta with a total energy equal to M , .  
The typical energy of these real quanta is 

The corresponding wavelength is larger, by a factor of 
order ( M o / M ,  j2, than the radius R 1 .  It follows that 
emission should proceed predominantly from states of 
zero angular momentum. We can compute the 
minimum time for the emission of -V uncorrelated quan- 
ta and reproduce the result of our one-dimensional prob- 
lem, Eq. (4.3). Note that this approach allows us to 
bypass an explicit construction of the late-time modes of 

the system. Thus we can avoid having to deal directly 
with the state of the gravitational field in the region 
where classical gravity is inapplicable. Rather, we ap- 
proach it indirectly, constraining the system to conserve 
its total energy and observing it, in effect, through the 
structure of the Bogoliubov transformation which it in- 
duces. 

V. DISCUSSION 

In the preceding sections we have described how a 
black hole might decay in a manner consistent with the 
laws of quantum mechanics. Particle production in our 
model is associated with the existence of an apparent 
horizon. The particles are produced in pairs: one parti- 
cle is emitted directly and the other approaches the hor- 
izon and is emitted after a lengthy time delay at  a con- 
siderably reduced frequency. No  real horizon exists in 
our model. Note that our description of the scalar field, 
from which these particles arise, is fully quantum 
mechanical. Hence one may regard our results as con- 
straints placed on the final evolution of a black hole by 
the laws of quantum mechanics. If the remnant of mass 
M I  were to disappear in a time of order 1/44, ,  as en- 
visioned by Hawking, then these quantum laws would 
have to be violated. What we have shown is that there 
is another possibility-that the remnant might slowly 
decay (in a time of order u z  - u  ) and that the laws of 
quantum mechanics should remain intact. Which of 
these pictures is correct will be determined only by the 
construction of a full theory which merges, insofar as 
possible, the theories of quantum mechanics and gravity. 

This paper does point out some aspects to be looked 
for in such a theory of quantum gravity. If our model is 
correct, then at the Planck scale gravitational forces 
must exist which reverse the accelerating collapse indi- 
cated by Einstein's classical theory (for M >>mp and 
which induce a Bogoliubov transformation of the type 
discussed in Sec. 111. Note that the temperature at 
which the remnant M I  decays is a function of the initial 
mass M ,  and is thus, in principle, an arbitrarily small 
quantity. It follows that any fields relevant for the decay 
of the remnant must have strictly massless quanta. If 
the collapsing object is comprised of ordinary matter, 
then it will possess large initial values of baryon number 
B and of the difference of baryon and lepton numbers 
B -L. Since there are no massless baryons, it follows 
that baryon number cannot be conserved in the process 
of gravitational collapse and subsequent black-hole eva- 
poration. Furthermore, if a grand unified theory which 
incorporates quantum gravity is to conserve the 
difference of baryon and lepton numbers, then there 
must be strictly massless leptons in the theory. This is a 
constraint not usually given by models of grand 
unification. 

Suppose now that we were to adopt Hawking's view- 
point and assume that the usual laws of quantum evolu- 
tion are invalid. This paper highlights the features that 
such a theory of gravity would have to possess. 
Specifically, there must be some physical mechanism 
which destroys the correlation between real radiated 
Hawking quanta and virtual quanta falling toward the 
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horizon. Such a mechanism could be provided by 
describing the black hole itself as a thermal bath of grav- 
itons. Then truly thermal radiation of various coupled 
fields could occur in the same manner as that in which 
other physical systems approach their equilibrium state. 
In this fashion one could associate an entropy with the 
quantum black hole, which would be transferred to the 
coupled quantum fields as the black hole decayed. Note 
that in the model developed here this is not what hap- 
pens. There is no entropy associated with the emitted 
particles of the quantum field, which remains in the 
same pure state. Therefore, it is inappropriate in our ap- 
proach to associate an entropy with the quantum black 
hole. An observer restricted to a limited spacetime re- 

gion could not observe the correlations which character- 
ize the final state into which the black hole decays and 
might assign a nonzero entropy to the apparently 
thermal radiation that he detects. But this is the usual 
entropy of statistical mechanics which is associated8 
with the incomplete information available to the ob- 
server; it is not an intrinsic property of the quantum 
state of the black hole or of the radiation which it emits. 
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