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The problem of obtaining a quantum description of the (real) Klein—
Gordon system in a given curved space—time is discussed. An algebraic
approach is used. The *-algebra of quantum operators is constructed ex-
plicitly and the problem of finding its *-representation is reduced to
that of selecting a suitable complex structure on the real vector space of
the solutions of the (classical) Klein—-Gordon equation. Since, in a static
space-time, there already exists, a satisfactory quantum field theory,
in this case one already knows what the ‘correct’ complex structure is.
A physical characterization of this ‘ correct’ complex structure is obtained.
This characterization is used to extend quantum field theory to non-
static space-times. Stationary space-times are considered first. In this
case, the issue of extension is completely straightforward and the resulting
theory is the natural generalization of the one in static space-times. Gen-
eral, non-stationary space-times are then considered. In this case the issue
of extension is quite complicated and we only present a plausible exten-
sion. Although the resulting framework is well-defined mathematically,
the physical interpretation associated with it is rather unconventional.
Merits and weaknesses of this framework are discussed.

1. INTRODUCTION

The purpose of this paper is to suggest a mathematical and conceptual framework
for describing quantum fields in curved space-times.

Fix a space-time (M, g,,).'T For simplicity, we shall restrict ourselves to (the
minimally coupled) Klein—-Gordon fields on this space-time, i.e. to scalar fields @ on
M which satisfy VoV, @ —u2® = 0, where V, is the derivative operator on (M, g,,)
and g is a fixed real number. To obtain a quantum description of these fields, we
must construct a Hilbert space of states, a x-algebra of operators, and introduce a
rule for dynamics. As is now well known, the construction of the *-algebra (of field
operators) itself is quite straightforward. Hence, it is convenient to use an algebraic
approach; i.e. to first construct, abstractly, the %-algebra, and then try to obtain
the Hilbert space by choosing an appropriate representation of this *-algebra.
The essential difficulty arises, of course, due to the lack of a suitable prescription for

1 For notes 1-30, see pp. 392—4.
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making this choice in a general curved space—time. It is only in the case when the
underlying space-time is static that such a prescription has been available: in this
case, one can define creation and annihilation operators by decomposing field
operators into positive and negative frequency parts, define the vacuum state using
the annihilation operators, and construct the required *-representation using this
vacuum state. Here, the essential simplification arises because (using the presence
of the Killing vector) one can decompose fields into positive and negative frequency
parts in a natural way. Hence, to extend this quantum description to non-
static contexts one often begins by asking the following question: how would
one decompose fields into their positive and negative frequency parts on such
space-times?

Perhaps the most important step in the present paper is that we begin by asking
a different—and, at first sight, what appears to be just the opposite—question:
Why does this procedure involving decomposition of fields ‘work’ in the first place?
From a physical view-point, there appears to be no a priori reason as to why one
should have to use a ‘global’ operation such as this decomposition to obtain a
mathematical description of such (intuitively) ‘local’ entity as a particle. Hence,
we begin by re-examining the static case itself. We find that there exist certain
physically motivated requirements on the required *-representation which do in
fact single out, among all possible #-representations, the one obtained by using the
positive and negative frequency decomposition. One might therefore say that these
restrictions constitute the ‘physics’ behind the use of this decomposition. We adopt
the view-point that it is these restrictions which are * fundamental’ and that the positive
and negative frequency decomposition, available in the static case, 1s only a mathematic-
ally convenient way of incorporating them. The idea then is to use the appropriately
modified versions of these restrictions to select the required =*-representations in
non-static space-times.

In §2 we begin with an explicit construction of the x-algebra o of field-operators.
Then, we investigate the possible #-representations of this &/. By imposing three
rather general and physically motivated requirements, we reduce the freedom
available in selecting the appropriate representation to that of selecting a suitable
complex structure? J on the vector space of (real) solutions of the Klein-Gordon
equation. Thus, in any given curved space-time, the problem of obtaining the
required *-representation is reduced to that of choosing an appropriate .J.

In §3 we consider static space-times.® In this case, the presence of a natural
decomposition of fields into positive and negative frequency parts provides us with
a natural complex structure J. Furthermore, this decomposition plays no other
role in the resulting quantum description: it is required only in order to obtain this
J. Hence, we focus our attention on this J and try to understand, from a physical
view-point, why this J is the ‘correct’ one. That is to say, we try to obtain a physical
characterization of this J. We find that there is in fact a physical requirement which
singles out this J among all possible complex structures. This requirement — hence-
forth called the energy requirement—essentially says that the energy of each one
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particle state (in the resulting -representation) be equal to that of the corresponding
classical field.

We then adopt the attitude that this ‘energy requirement’ is somehow funda-
mental to quantum field theory and try to extend it to non-static space-times. In
§4, we consider stationary* space-times. In a general stationary space-time,
although one can introduce the notion of positive and negative frequency fields
using the Killing vector, there is apparently no natural prescription for decomposing
fields into their positive and negative frequency parts. It is this absence of prescrip-
tion that has prevented a satisfactory extension of quantum field theory to station-
ary space—times (see, for example, Fulling 1972). It turns out, however, that the
‘energy requirement’ does admit a straightforward extension to the stationary case.
Furthermore, it again selects for us, asin the static case, a unique complex structure.
Thus, we do in fact obtain the required extension of quantum field theory without
having to first decompose fields into their positive and negative frequency parts.

In §5, we consider space-times which are not necessarily stationary. As one
might expect, the issue of the extension of the ‘energy requirement’ is quite com-
plicated in this case. We just select a plausible extension and proceed, as before, to
construct the required =x-representation. The final result is one possible mathe-
matical and conceptual framework for describing quantum fields. Although the
mathematical aspects of this framework are all well defined, the physical interpreta-
tion which emerges out of it is quite unconventional in certain respects. Hence, the
discussion of this section is to be regarded more as a preliminary exploration for
obtaining a quantum theory of fields in general curved space—times, than as a
completed theory in itself.

2. GENERAL FRAMEWORK

The discussion of this section’ is divided into two parts: we first construct the
*-algebra of field operators and then discuss the issue of obtaining the appropriate
Hilbert space of states.

The x-algebra of quantum operators

There are several ways in which one can construct this %-algebra. Here we sum-
marize a procedure which is a slightly modified version of the one discussed by Segal
(1967) in the context of Minkowski space.

Let V denote the vector-space of all well-behaved$ real-valued solutions of the
Klein—Gordon equation on the given space-time. With each element @ of V,
associate an abstract operator F (D). We shall call this operator a field-operator.
Consider the free *-algebra generated by these field operators. On this %-algebra,
impose’ the following conditions:

self-adjointness: F (D) = F¥(D), (1)

linearity: F(D; +rD,) = F(D,)+rF(Dy), (2)

commutation relations: [F(D,), F(D,)] = {lf (D V, Dy — DV, D) dS“} I (3)
to

25-2
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Here, @, @, and @, are arbitrary elements of V; r is an arbitrary real number; and
t, a space-like Cauchy surface in (M, g,,).% Denote the resulting =-algebra by .«7.
This &7 is the required *-algebra of quantum operators.

Note that the integral on the right side of equation (3)islinear and anti-symmetric
in @, and @,. Hence, it defines a second rank, skew tensor, say £2, on the vector-space

V2D, D,) = | (PV,D,— P, V,D,)dSe This 2 is in fact the tensor which is
to

induced on V by the natural symplectic structure on the classical phase-space of the
Klein—-Gordon system. Thus, by imposing condition (3) above, we have only re-
quired that ‘the commutator between any two field operators be i times the Poisson
bracket between their classical analogues.’

Finally, we show that the x-algebra .27, constructed above, is in fact naturally iso-
morphic to the more familiar *-algebra of the canonically conjugate operators.
Every solution @ of the classical Klein—-Gordon equation can be characterized by a
pair, (f,g) of functions on an arbitrarily chosen (but fixed) space-like Cauchy
surface t:f = @|,, and g = n9V, D|, , where n® is the unit future-directed normal to
t,- Denote (0, g) by @(g) and F(f, 0) by ZI(f). Then, it follows from equations (1)—(3)
that (i) these @’s and IT’s are self-adjoint; (ii) they are (real) linear in their argu-
ments; and (iii) they satisfy the canonical commutation relations

[D(9), P(g")] = 0, [L(f),IL(f)]=0 and [D(g),M(f)] =1 ftfng,

where dV is the natural volume element, induced by the space~time metric g,,, on
to- Thus, o isindeed a copy of the more familiar x-algebra generated by the (smeared
out) field-configuration and field-momentum operators.

The Hilbert space of quantum states

Having constructed the *-algebra .«Z, we can now face the more difficult issue of
obtaining the appropriate Hilbert space of quantum states.

To obtain this Hilbert space, we must construct a =-representation® of &7. As is
well known (see, for example, Wightman 1967), the existence of the infinitely many
degrees of freedom in the Klein—Gordon system leads to the existence of several
inequivalent =-representations of this /. Hence, we must impose some physical
requirements to single out the appropriate one. First, we shall demand that the space
of all quantum states (i.e. the Hilbert space underlying our =-representation) be a
symmetric Fock-space &, based on some Hilbert space . As a consequence of this
requirement, a ‘ particle interpretation’ would be naturally built into the formalism:
an element of 5 could be thought of as representing a quantum state of a single
particle and that of &, as representing some superposition of n-particle states for
various values of n. Secondly, we need a requirement about ‘the size’ of the one-
particle Hilbert space . An examination of the standard quantum field theory in
Minkowski space suggests the appropriate condition;'® we shall demand that, as a
real vector-space, S be a copy of the vector-space V of all well-behaved, real-valued
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solutions of the classical Klein—Gordon equation. Thirdly, we shall require that the
x-representation be such that each (abstractly defined) field operator is mapped to
the usual sum of the (concretely defined) creation and annihilation operators on the
Fock-space & . This requirement reflects the intuitive idea that a quantum field is
to be thought of as ‘an assembly of (quantized) simple harmonic oscillators.” (All
these requirements are more or less ‘universal’; they are invariably imposed,
although often implicitly in most discussions of quantum fields in curved space-
times.) We shall now show that these three requirements restrict the admissible
representations to a rather small class. Furthermore, we shall be able to so arrange
our formalism that the resulting restricted freedom is not only explicitly exhibited
but its mathematical investigation is also made easy.

Consider the one-particle Hilbert space 5. As a real vector space, this & is to be
a copy of V. However, since the elements of 7 are to represent quantum states of a
particle, 3 must have, in addition, the structure of a complex Hilbert space. Hence,
we must introduce on V, a complex structure J, and define, on the resulting com-
plex vector space (V, J), a hermitian inner product ¢, ). The one-particle Hilbert
space & would then be the Cauchy completion of the complex inner-product space
(V,J,{, ). Choose a pair (J, {, ). We shall now show that the three requirements,
made above, not only determine a unique representation of 27 based on this pair,
but also provides a restrictive compadtibility requirement on the pair itself.

The space of all quantum states is, by the first requirement the symmetric

Fock-space # based on the Hilbert space #: F = @ S#®% where S ®* is the

Hilbert space of all kth rank symmetric tensors over Jf and where @ denotes the
operation of taking direct sums (of Hilbert spaces). Thus, a typical element ¥ of &
is a string with a finite number of non-zero entries ¥ = (£°,£%,£2, ..., £, ...), where £*
isin S ®k, On this & there exist naturally defined creation and annihilation opera-
tors. Associated with each o in 5 we have

Clo)W = (0,£0%,/(2)8 n 01, /(3)8%n 0%, ...), (4)
AW = (o1 £1,/(2) ol £2,4/(8) o1 £3,...), (5)

where n denotes the operation of taking symmetrized outer products; [~ the usual
contraction defined by the hermitian metric on #; and where o is the complex-
conjugate of o1 in . Thus, one may regard C(o?) as ‘creating a particle in the state
ol’ and A(o!) as ‘annihilating a particle in the state o’. Following properties of
these operators result directly from the above definitions: (1) 4(c?) is the adjoint
of C(g1); (ii) each creation (annihilation) operator is complex linear (anti-linear) in
its argument; and (iii)

[C(e")C(T)] =0, [A(0"),A(m)] =0 and [A(d%),C(rY)] = (o}, 7)1,
where {01, 7%) is the inner-product between the one particle states o1 and 71, and

where [ is the identity operator on & (for details, see Geroch 1971). We now use
our third requirement: we demand that every (abstract) field-operator F(®) be
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represented by the concrete operator C(®')+A4(P*) on F.11 It is this condition
which gives rise to the compatibility requirement on the pair (J, {, ) with which we
began. It follows from the properties (i) and (ii) (listed above) of creation and an-
nihilation operators that the operator C(®?) + 4 (P?) is self-adjoint and real-linear
in its argument @1, Thus, the identification of C(D!) +.A4(P) with (the representa-
tive on & of the abstract operator) F(®)is already consistent with equations (1) and
(2) satisfied by the field-operators. We now consider equation (3); i.e. the com-
mutation relation between field operators. This equation, together with the identi-
fication of (@) with C(®') + 4(P*), implies that we must have

[4 (DY) + (DY), A(B) + O(DY)] = iQ(D, D) I

for all @ and @ in V, and hence, that 2Im (@, #1) = (D, ®). This condition on the
imaginary part of the inner-product {, ) in turn restricts the choice of J: since {, »
is a hermitian inner-product on (V,J), we must have

v=020rJ isa positive-definite metric on V, (6)
and (DL, Bty = Ly(D, D)+ LiQ(D, D) (7)

for all @ and @ in V.12 Thus, the inner-product ¢, ) is completely determined by the
complex structure J. Furthermore, the choice of J is itself restricted: J must be
compatible with the symplectic structure £ in the sense of (6).

To summarize, in order to obtain an ‘admissible’ *-representation of &7 (i.e. a
representation satisfying our three requirements), we must select, on V, a complex
structure J which is compatible with the symplectic structure 2 thereon. Further-
more, the choice in this selection is all the freedom that we have: there are exactly
as many ‘admissible’ representations as there are possible choices of J.

The rest of this paper is concerned with the issue of selecting appropriate complex
structures in various contexts. To conclude the present section, we shall point out
some general qualitative features of this issue. Note, first, that a quantum field
theory in a given curved space-time, may be thought of as a description of the
(quantum) interactions of fields and particles with the given, external gravitational
field. Hence, one expects in analogy with electrodynamics, that, in a general, non-
stationary space-time, there would occur processes such as spontaneous creation
and annihilation of physical particles. How would such processes be described in the
present framework ? We shall see that these processes will make their appearance by
‘forcing a time-dependence on the complex structure J’.13 In fact, ‘ the rate of change
of J with respect to time’ will turn out to be a measure of the ‘rate of particle
production’ by the given gravitational field. In general, it is only in the case
when the underlying space-time happens to be stationary, that we shall have a
canonical, time-independent complex structure, and then, there will be no particle
production.



PROCEEDINGS THE ROYAL

SOCIETY

OF

ROCEEDINGS THE ROYAL

SOCIETY

OF

Downloaded from rspa.royalsocietypublishing.org

Quantum fields tn curved space—times 381

3. STATIC SPACE-TIMES

In the previous section, we reduced the problem of obtaining a quantum de-
scription of fields in any curved space—time to that of introducing a suitable complex
structure J on the space of solutions of the Klein—Gordon equation on that space—
time. Unfortunately, there exist several different possible choices of J, and hence
one is still faced with the problem of obtaining the ‘correct’ one. Recall, however,
that, in the case when the underlying space—time happens to be static, there exists,
already, a well established and a completely satisfactory quantum description of
fields (see, for example, Fulling 1972). Hence, in this case, one does know what the
‘correct’ complex structure is. The idea now is to use this information to obtain a
prescription for selecting the required J in more general contexts. More precisely,
we shall now characterize this ‘ correct J’ in a way which can be readily generalized
to non-static contexts.

Let (M, g, t%) be a static® space-time. Denote, as before, the vector space of
all real, well-behaved solutions of the Klein—-Gordon equation by V. We first recall
the standard procedure by which one obtains the required complex structure on
this V. Using the fact that £2 is a time-like hypersurface-orthogonal Killing field, one
first decomposes every real solution @ into positive and negative frequency parts
@ = @+ @, and then sets J® = iD++ (—i) @~. Note that, although @ is a real
solution of the Klein—Gordon equation, @+ and &~ are themselves complex solu-
tions (@~ being the complex-conjugate of @+), while J P is again a real solution. It is
straightforward to check that this J is in fact a complex structure and that it is
compatible with the natural symplectic structure 2 on V. Unfortunately, however,
this particular definition of J cannot be carried over to more general contexts, since
it uses both the Killing property and the hypersurface orthogonality of ¢*. Moreover,
as was pointed out in §1, the physical motivation behind this particular con-
struction of J is unclear already in the static case. Hence, we shall now introduce a
different procedure for obtaining this same J; a procedure which, in a certain sense,
brings out ‘the physics’ behind this choice of J. Furthermore, it will turn out that
this procedure can in fact be carried over to more general contexts.

Note, first, that, if we only require that the complex structure J be compatible
with the natural symplectic structure £, then there exist, even in the static case,
several possible choices of J. Hence, to single out the one which we already know to
be the correct one, we must impose some additional physical requirements. One such
requirement—and, in a sense, the most natural one —is suggested by the following
considerations. Recall that, every solution @ of the classical Klein—Gordon equation
plays a dual role in the present formalism: it may be regarded as a classical field on
the space-time, or alternatively (for any given choice of the complex structure J),
it may be regarded as an element of the one particle Hilbert space . This fact may
be regarded as a reflexion, in the framework of quantum field theory, of the intuitive
notion of the wave-particle duality. Given a solution @ of the classical Klein—
Gordon equation, one may regard it as a classical field, compute the stress-energy
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tensor field 7, = V, @V, D — }g,, (VeDV, D + p2P%), and evaluate the energy associ-

ated with this @: ¥ = f T,t*dSb. (Here, ¢, is any space-like Cauchy surface in
to

(M, g,3)-) On the other hand (for any given J) one may consider the one particle state
@ defined by this solution, and compute from it another number, (@', HP'), the
expectation-value of the one-particle Hamiltonian H. (H is that operator which
generates translations along the integral curves of t¢. Thus,* HP! = — J(F, D)L.)
This expectation-value may be regarded as the energy associated with the one par-
ticle state @1. It seems natural to require that the two energies be equal; i.e., that

f T,,t2dS? = (DL, HP') for every @in V. Note that the left side of this equation can
to

be computed purely classically,i.e., that it isindependent of the choice of J. The right
side, on the other hand, depends on this choice quite crucially. Hence, the above
‘energy requirement’ is a constraint on the choice of allowable J’s. It turns out
that this requirement in fact exhausts all the freedom that one has in this choice.

TuEOREM. T'here is a unique complex structure J on V such that,
(i) 21 J is a positive definite metric on V (i.e. J is compatible with the sym
plectic structure £2); and

(ii) (P, HD) =f T, t*dS? for every @inV(i.e. J satisfies the energy requirement).
to

Furthermore, this J is precisely the one which is usually defined by J @ = i@+ —id-,
where O+ and D~ are, respectively, the positive and mnegative frequency parts of @.

We now sketch the proof.1® Using the expression for the inner-product (,) in
terms of 2 and J, one obtains, from the energy requirement,

QP %, ) =2 T,teds® (8)

to
and 2D, J%, D) =0 (9)

for every @ in V. The first of these equations has no bearing on the choice of J.
A straightforward calculation shows that this equation is always satisfied.1 It is
the second equation that restricts the possible choices of J. Starting with the most
general linear operator J on V, and demanding that it be a complex structure
compatible with £ and satisfy (9), one can easily show that this J must be the
standard complex structure. The proof of this assertion, although quite straight-
forward, is rather long and technical. It is given in the appendix in a slightly more
general context.

Thus, the energy requirement provides us, in the static case, a mathematical
characterization of the complex structure which we already know to be the ‘ correct
one’. In §4, we shall generalize this condition to the case when the underlying space-
time is stationary, and in § 5, to the case when it is arbitrary.



PROCEEDINGS THE ROYAL

SOCIETY

OF

ROCEEDINGS THE ROYAL

SOCIETY

OF

Downloaded from rspa.royalsocietypublishing.org

Quantum fields in curved space—times 383

4. STATIONARY SPACE-TIMES

We now consider the case when the underlying space-time is stationary rather
than static. Thus, the Killing vector field ¢¢ is now assumed only to be everywhere
time-like and is not necessarily hypersurface orthogonal. In this case, although the
notion of positive and negative frequency solutions is itself well-defined, there is no
obvious natural prescription for decomposing a real solution into its positive and
negative frequency parts. (The standard procedure used in the static case makes
a crucial use of the hypersurface-orthogonality of the static Killing field, and hence,
does not admit a straightforward extension to the present case.) Hence, one must
select the required complex structure by some other procedure. It is here that our
previous characterization of the complex structure begins to play a crucial role:
we shall see that the energy-requirement (based again on the intuitive notion of the
wave-particle duality) selects for us a complex structure J, and hence a Fock
representation of &7, even in the stationary case.

Note first that it is meaningful to impose the energy-requirement in a general

stationary space-time: £ =f T,,t2d8% is again a conserved quantity, the energy
to

associated with a classical field; and H defined by H®' = —J(Z,D)! is again a
well-defined operator on the one-particle wave-functions, the generator of transla-
tions along the integral curves of ¢2. Hence, we may again demand that

E = (¢!, HP")

for all @in V. Thatis, to say, we may again require that our complex structure be so
chosen that the energy of each one particle state equals that of the corresponding
classical field. It turns out that this requirement does select for us a unique complex
structure J in a general stationary space-time.

We shall begin by writing down an explicit expression for this J, especially since
such an expression has not been spelled out in the context of general (i.e. non-static)
stationary space-times. For this purpose it is convenient to proceed as follows.
Introduce on ¥ the following inner-product (,):

(D, D): = % f ) [V, BV, ®+V, BV, D — g, (VeDV, D+ u2dP)]t2dS®,  (10)

where ¢, is any space-like Cauchy surface. It is easy to verify that this (,) is well
defined i.e. that the integral on the right side of equation (10) is independent of the
particular choice of the surface £, made in its evaluation; that it is linear in each
factor; that it is symmetric; and that the resulting norm is positive-definite. (In
fact, (D, D) is just the energy associated with the classical field @.) On the re-
sulting inner-product space (V, (,)), £, is an anti-sy mmetric operator:

(Q)?gté) = (gt P, (ﬁ)
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Hence, on the Hilbert space V obtained by the Cauchy completion of (V,(,)),
O =-%, %, is a positive-definite self-adjoint operator.l” Hence, we can define
on V, the operator ©—% which is also positive-definite and self-adjoint. Set

J =042,

It is straightforward to check that this J is a complex structure compatible with
the symplectic structure 2, and that it satisfies the energy requirements.?®.

We next show that this J is in fact the only complex structure which satisfies
our requirements. Let J be another such complex structure. Set K = ~JJ. We
shall show that K must be the identity operator on ¥, and hence J must equal J.
Using the assumption that Jis compatible with £, it is straightforward to show that
K is a self-adjoint positive-definite operator on V. From the assumption that J
satisfies the energy requirement, it then follows that K must commute with J. Hence
K?=—JJK = —~JKJ = +JJJJ = +1, where I is the identity operator on V. The
required result then follows from the fact that K is a positive-definite self-adjoint
operator on V.

Thus, the energy requirement selects for us a preferred complex structure, and
hence a preferred Fock representation of the x-algebra &7 in any given stationary
space—time.

Finally, we discuss dynamics. It turns out to be convenient to work in the
Heisenberg picture. The idea is to define quantum dynamics by requiring that
every field-operator should mimic the time-evolution of its classical counterpart:
we set [F(D)] = F(Z, D). Since creation and annihilation operators can be expressed
in terms of field-operators,

C(PY) = (1)2i) (iF(D)+ F(JP)) and A(DY) = (1/2i) (iF(®)— F(J D))

and since J is time-independent (i.e. since Z,J(®P) = J(Z, D)), it follows that
[C(PY)] = C(Z P)Y) and [A(DPY)] = A((Z, D)Y). Thus, under time-evolution, there
is no ‘mixing’ between creations and annihilation operators. (Note, incidently,
that if J were time-dependent, creation operators would pick up an annihilation
part, and annihilation operators, a creation part, under time-evolution, i.e. there
would in fact occur a ‘mixing’.) Hence, it follows that the vacuum expectation value
of any number-operator is zero at all times. Thus, if the underlying space-time
admits a everywhere time-like Killing field, the vacuum state is indeed stable and
phenomena such as the spontaneous creation of particles do not occur.

On the other hand, if the Killing field is allowed to be space-like in certain regions,
the above formalism is inapplicable?® and the vacuum state need not be then stable.
Although such situations are of great physical interest, a satisfactory formulation
of quantum field theory on such space-times appears to be quite difficult. If the
Killing field is allowed to be space-like, the energy associated with the classical
fields would no longer be positive—definite, and hence, in general, well-behaved data
sets for the Klein—-Gordon fields would not necessarily evolve to non-singular solu-
tions.2t Under such pathologies in the Cauchy development, the very construction
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of the x-algebra &7 would break down. Hence, it is perhaps fair to say that, at the
present stage, it is not clear how one would even begin to construct a quantum field
theory on such space—times.2?

5. GENERAL CURVED SPACE-TIME S

We now discuss the issue of obtaining the appropriate complex structure J in the
case when the underlying space—time is not necessarily stationary.

Recall first that one expects from general physical considerations a non-stationary
gravitational field to give rise to processes such as creation and annihilation of
physical particles. On the other hand, it is clear from our discussion of quantum
dynamics in §4, that, if we have a fixed, time-independent complex structure J,
the vacuum state of the resulting Fock-representation is stable, i.e. there is no
particle production whatsoever in the resulting quantum theory. Thus, general
physical considerations suggest that, in the present case, we should try to obtain a
complex structure which is, in a suitable sense, ‘time-dependent’. A mathematical
investigation of the possible complex structures supports this suggestion: there is
apparently no natural time-independent complex structure on the vector space ¥
of real solutions of the Klein—Gordon equation in a general non-stationary space—
time.

Let us then try to select a ‘time-dependent’ complex structure. As one might
expect from the fact that the underlying space—time is now arbitrary, the issue of
this selection is quite complicated. It is therefore convenient to separate difficulties
which are of purely mathematical origin from those associated with the physical
interpretation. Hence, we shall proceed in the following steps: first, we shall con-
centrate only on the mathematical aspects of this problem, develop sufficient tools,
prove certain existence and uniqueness theorems,? and then, at the end, face the
issue of the physical interpretation of the resulting framework. The interpretation
to which one is led is quite unconventional in certain respects and there still remain
several issues to be resolved. We emphasize again that the discussion of this section
should be regarded more as a first approach to the problem of describing quantum
fields on general curved space—times, than as a completed theory in itself.

Introduce, on the given space-time, a time-like hypersurface orthogonal unit
vector field £2.2% This vector field provides us with a slicing of space-time into space
and time. It turns out that it also determines, canonically a time-dependent com-
plex structure J(t). More precisely, for each choice of a space-like hypersurface #,,
orthogonal to £2, we can obtain a canonical complex structure J(f,), (compatible
with the symplectic structure ), and hence, a canonical Fock representation of
the *-algebra 7.

The essential idea is again to use an ‘energy requirement’ based on the intuitive
notion of the wave-particle duality. Recall that, for this purpose we need two
quantities: the energy E of the classical Klein-Gordon field and the Hamiltonian
operator H on the one particle quantum states. In the previous two sections, we
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used the Killing field to define these two quantities. The idea now is to use the given
vector field £2. Consider, first, the energy: given a solution @ of the Klein—Gordon
equation, and a 3-surface £, orthogonal to £2, we wish to define a number, K, the
energy (relative to £2) of the scalar field @ at the instant of time ¢,. We set

E@w&=fﬁhM?MR
to

where T, is, as before, the stress energy constructed out of @, and where the scalar
field N is defined by N£2V,t = 1, with ¢ the time-coordinate defined by £2.25 (Thus
Ng® = 0/ot. Note that, if £2 happens to be a multiple of a Killing field, this £ coin-
cides with the usual energy which is then a conserved quantity.) The definition of
the one particle Hamiltonian H, on the other hand, is not as straightforward. We
cannot simply set H P! = — J(Z)y, P)* because, if N&#is not a Killing field, Ly, D will
not be in V for every @ in V. Hence, to define H we must go back to the classical
Hamiltonian and examine its action on the classical phase-space. This examination
yields the following definition® of H:H(£,t,) ®' = —J(t,) (D), where, if @
has the initial data @|t, = ¢, £V, D], = =, then & ® is the solution with initial data
O, = N, and £V,0%)|, = Nh®D,D,¢+h®D,NDyo—u?Neo. Here, hy, is the
induced metric on #y, and D, is the derivative operator on (f,, #%%). The dependence

on #, of the ‘dot’ operation arises from the fact that the classical Hamiltonian is

itself time-dependent in the present case. Thus, both £ and H now depend on the

choice of the vector field £% as well as on that of the space-like 3-surface £,. As before

H depends, in addition, on the choice of the complex structure .J. We now require

that J(t) be so chosen that (@, H(£?,t) D'y, = E(£e,t) for all ¢ in V; i.e., that the

energy (relative to £%) of each one-particle state be equal to that of the correspond-

ing classical field at each instant of time ¢. As in the static case, using the expression

of the inner-product ¢, );in terms of the symplectic structure 2 and the complex

structure J (£), this condition can be reduced to the following one: Q(®, J(t) d®) = 0

forall @ in V.18 It turns out that this last condition selects for us, again, a unique

complex structure J(t). The proof of this assertion is given in the appendix.

To summarize, given & time-like hypersurface orthogonal unit vector field2* £,
we obtain a canonical (time-dependent) structure J(t), and hence, a one parameter
family of Fock representations of the =-algebra o7,

How is dynamics to be described in the present case? As before, we require that
the field operators should mimic the time-evolution of their classical counterparts,
i.e. we set (F(®))|; = F(®®). Next, consider creation and annihilation operators.
Since we have a Fock representation of &7 for each choice of the 3-surface ¢,, we
also have a decomposition of field operators into creation and annihilation parts for

each such choice:
F(®) = C(BY, 1) + A(P 1,).

Hence,

O(PL,8) = (1/23) [iF(®) + F(J(t) ®)] and A(PYt) = (1/2i) [iF(D)— F(J(t) D)].
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Therefore, we have

[O(DL,8)] = (1/2i) [iF(di(t)) +F (J(t) & ® 4 (a% J(t)) @)]

and [A(DL, )] = (1/21) [iF(q’w) -F (J(t) O (a% J(t)) @)].
However, since in the present case, J is time-dependent, i.e. since in general
Tt @£ I @), o, (570)0 %0,

creation and annihilation operators ‘get mixed’ into each other as time evolves.
Thus for example we have

[C(PY, )] = C(@DY,t)+(1/2i) C ((a% J(t) @)1, t) +(1/21) 4 ((% J(t) qb)l, t),

i.e. a creation operator picks up an annihilation part under the ‘dot’ operation.
Hence, it follows that vacuum state (in any Fock space) is unstable: vacuum ex-
pectation values of (second and higher) time-derivatives of number operators fail
to vanish. Thus, for example, if we evolve the number operator

N(D, ) = C(P, o) A(D, 1)

defined on the ¢, Fock-space, to time ¢, in general we would obtain, not the opera-
tor N(®,t,), but rather, an operator whose expectation value in the vacuum state
(of the ¢; Fock space) fails to vanish.

Note, however, that the dynamical rule, (F(®)) |;, = F (@), is itself perfectly
well-defined: it induces a one-parameter family of automorphisms? on the *-algebra
4. Since each Fock space gives us a well-defined *-representation of &, and since
the dynamical rule respects the structure of .27, all numbers which can be directly
computed from this framework are necessarily divergence-free. More specifically,
the expectation values of the rate of change of any operator which can be expressed
as a finite sum of finite products of field operators (or equivalently of creation and
annihilation operators) are guaranteed to be finite, Of course, there exist certain
operators—notably the total-number operator? —which cannot be so expressed.
The expectation values of the rate of change of such operators cannot be directly
computed and must be examined separately.?®

This completes our mathematical discussion. We now attempt to interpret this
formalism physically. It seems natural to regard the elements of the Fock space
associated with the 3-surface ¢ as representing the ‘quantum states of particles af
that instant of time’. Failure of the complex structure to be time-independent then
implies a spontaneous creation of particles. The ‘rate of change of J with respect to
time’ is then a measure of the ‘rate of production of particles’: the inner product

A(Go)e))- (@) o)),

governs the rate at which the particles are produced in the state [ D, {] at the instant
of time ¢.
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However, if one accepts this interpretation, one is led to an unconventional
picture of physical particles: since the choice of the complex structure depends
quite crucially on that of the (time-like) vector field £2, one obtains a definition of
particle-states (or, equivalently of the vacuum) for each choice of this £#. That is
to say, the above mathematical framework seems to imply that the notion of a
particle be a ‘relative’ notion rather than a fixed, absolute one.

Let us, for the moment, accept this viewpoint and explore some of its implications.
First, since it is a vector field £ that determines the one parameter family of Fock
representations, and since the integral curves of such a £% can be thought of as repre-
senting the world-lines of a field of observers, perhaps the most natural interpreta-
tion is that, in this framework, the notion of a particle would depend on the choice
of observers. Recall, however, that, in the previous section, we obtained a fixed,
canonical representation of .7, and hence, a fixed, canonical notion of particles in
any given stationary space—time. How is that result to be interpreted in the light of
the present discussion? Recall that this canonical representation was obtained by
using the Killing field ¢* in place of N£*. Hence, one could interpret the elements of
that Fock space as being the quantum states of particles as seen by the observers follow-
ing the Killing trajectories. From this viewpoint, the stationary Fock space is
canonical or natural only in so far as the motions along Killing trajectories are
canonical or natural. Thus, one can, even in the stationary space-time, make a
different choice for the vector field £ and obtain a completely different notion
of particles. In particular, already in Minkowski space-time, one could choose for
£2 a vector field which fails to be a Killing field and obtain a representation in which
the vacuum is unstable: the present formalism seems to predict that a detector
moving along such a vector field would observe, at least locally, particles being
spontaneously created and annihilated.

This ‘observer dependent’ framework, although quite unconventional, is perhaps
not a hopeless candidate for describing quantum fields in curved space-times. For
example, within this framework, one would still be able to formulate the various
conservation laws which will be respected for any choice of the field of observers. It
may also turn out that each set of observers will find the world around themselves
not only consistent with the theoretical predictions but also quite ‘normal’: for
example, non-stationary observers in stationary space-times will ‘experience’ a
time dependence in the space-time metric, and hence, will not be surprised to ‘see’
also a spontaneous creation of particles. Unconventional features (such as the
‘relativity’ in the notion of particles) arise only when we compare the predictions
for two different sets of observers. Note, furthermore, that these ‘unconventional’
features do not contradict, e.g. the usual ‘Poincaré invariant physics’: it isin fact a

prediction of this frame-work, that, in Minkowski space, all inertial observers would
‘see the same physics’. Unconventional features refer only to situations in which we
allow non-inertial observers in Minkowski space, or, more generally, non-stationary
observers in stationary space-times. Furthermore, these features are in (at least
qualitative) agreement with certain recent suggestions (Unruh 1974b) based on
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general physical considerations: using simple models of detectors it has been argued
that, in Minkowski space, accelerating observers would detect particles being
spontaneously created and annihilated even when the inertial observers record
only a (stable) vacuum. Finally, this ‘observer dependent’ description has a certain
asthetic appeal: it sets up some sort of a tie between what the observers do and
what they detect. One would hope that some such tie would be retained in the
‘ultimate’ quantum theory, should there exist such a theory.

6. DISCUSSION

In §1 we began our discussion by asking why, in the standard formulation of the
quantum field theory, a ‘global’ technique such as the decomposition of fields into
positive and negative frequency parts is required for a successful description of
such ‘local’ entities as particles. The general mathematical analysis of §2 led us to
the conclusion that this decomposition serves precisely one purpose: it selects a
suitable complex structure J on the vector space of real solutions of the Klein—
Gordon equation. We therefore focused our attention on this J and tried to under-
stand why, among all possible complex structures, it is the one which is physically
appropriate. The energy-requirement suggested an answer: one might say that this
choice of J is the physically correct one because only for this choice is the energy of
each one-particle quantum state equal to that of the corresponding classical field.
Thus, the success of the technique of decomposing fields can be traced back to the
interplay between classical waves and quantum (states of) particles; an interplay
which dominates the mathematics of quantum field theory.

Since, in classical general relativity, we can introduce the notion of energy of a
system relative to any given set of observers—not just those following Killing
trajectories—we can obtain a (modified) energy-requirement for any given set of
observers in any given space-time. Having adopted the viewpoint that energy-
requirements are somehow fundamental in the choice of the complex structures,
we are then led to a ‘observer-dependent’ complex structure and hence to a ‘ob-
server-dependent’ notion of particles. Although this dependence on the choice of
observers is unconventional, the resulting formalism is of interest because it
makes definite predictions. Furthermore, these predictions refer, not to asymptotic
measurements, but rather to the detailed measurements made by observers travel-
ling through regions in which space—time curvature is not necessarily negligible.
In addition, there are predictions about, for example, what non-inertial observers
would see already in Minkowski space.

Of course there remain several issues which must be investigated in detail before
one can actually accept that such observer-dependent predictions refer to the ‘real
world’. '

We shall conclude this discussion by describing what is perhaps the most obvious
of such issues. Consider a zero rest mass field in an asymptotically simple space—
time. In this case, one can construct a Fock space of ingoing states on #—, a Fock
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space of outgoing states on £+, and obtain an unambiguous S-matrix description of
the various quantum processes such as the net creation and annihilation of particles
by the underlying gravitational field. Note that, this framework refers only to the
intrinsic geometrical structure of the given space-time (and of #) and does not
require, in addition, a preferred vector field: the predictions of this framework refer
only to asymptotic measurements. Hence, if the present ‘observer-dependent’
descriptionis to be viable, its predictions about these asymptotic measurementsshould
be independent of the choice of the field of observers (i.e. of the time-like vector
field). Perhaps the most striking drawback of the present description is that, it is

not clear, a priori, if it satisfies this viability criterion. So far, a detailed examina-

tion of the situation has yielded only the following result: if two vector fields coincide

outside a ‘finite time-interval’, then, although the respective quantum descriptions

(cf. § 5) will, in general, be quite different from each other within that interval, their

S-matrix descriptions in terms of ‘ingoing’ and ‘outgoing’ states (with respect to

that interval) will coincide.? This result itself can only be regarded as an indication

that the viability criterion under discussion will probably be satisfied. A more

detailed investigation is necessary to settle even this issue.

We wish to thank R. Geroch, G. Gibbons and R. Penrose, for several valuable
discussions. One of us (A. A.) also thanks R. Gowdy for explaining to him Unruh’s
suggestion which is referred toin §5, and E. C. G. Sudarshan for a discussion on the
viability of an ‘observer dependent’ quantum description of fields.

APPENDIX

Consider a space-time (M, g,,). Choose a space-like Cauchy surfacet, in this space—~
time. Let %, denote the induced metric on this #,; and let D, denote the derivative
operator and dV the volume element on (ty, k). Next, consider the vector space 7
of pairs, (¢, ) of functions which are real, smooth, and of compact support on ¢,.

Define on this 7 a 2-form as follows: Q(o,m), (§, 7)) = f (7@ — @) dV, for any two
to

elements (¢, 7) and (§,7) of V.

The vector space ¥ is of course naturally isomorphic to the space ¥ of all well
behaved, real solutions of the Klein-Gordon equation. This natural isomorphism
maps 2 on ¥ to the 2-form 2 on V definedin § 1. We now give a proof of the assertion
about the uniqueness of the complex structure on ¥ (made in §5) in terms of ¥ and

Q.

THEOREM. There exists a unique complex structure J on V such that

() P =@ J is a positive definite metric on V; and

() P((p,m), (¢, 7)) = O for every pair (o, m) in V, where (¢, 7r) is related to (¢, m) by
¢ = Nw, 1= ND*D,o+D*ND,o—u?Nep; N being any fixed positive function on
to, and ., any fixed real number.

We now give the main steps in the proof.
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Let 7 denote the space of all real-valued, smooth functions of compact support
on ¢,. Since Ji is a linear-operator on 7 there exist linear operators 4, B, C, and D on
7 such that J (¢, 7m) = (Ao + Bm, Cm+ Dg). We shall now show that conditions (i)
and (ii), given above, determine these operators completely.

Since J is a complex structure, we have J2=_1. Hence, it follows that

A24+BD =—~1 and AB+BC =0, At
C2+ DB =—1 and DA+0’D=O.} (A1)

Next, we incorporate conditions (i) and (ii). For this purpose, we must first express
¥ in terms of 4, B, C, and D. Using, in the definition of §, the expression for 2, we
obtain

(o) @>7)) = f (B — oD +mAG —oCR) AV (A2)

for all pairs (¢, 7) and (3, 7). Since ¥ is symmetric, it follows that

L 7BfaV =ft FBfav, L iprav | joray

(A3)
and fAfAV = —f fofav
t to
for all elements f and f of 7. Next, it follows from positive definiteness of 9 that,
f fBfdV >0 and ] fDfdV <0 (A4)
to to

for all fin 7. Finally, since ¥((¢,7), (¢,7)) = 0, for all ¢ and 7 in 7, we have
Nf(Cf)dV =0 and f (Nf)(Df)dV:——f (N-1Of)BfdV, (Ab)
to [2) to

where we have set N2D2D,+ ND*ND,—u?N2 = —@.

We have now imposed all available conditions on 4, B, C, and D. First, we shall
show that these conditions imply 4 = 0 and C = 0. Setting f = g+ 4 in the first of
the equations (A 5) and using the last of the equations (A 3) we obtain

O = N-14N (A6)

as operators on 7. Hence, it suffices to show that 4 = 0. For this purpose we introduce
a Hilbert space K: K is the Cauchy completion of the inner-product space (7, (,)),

where (f,9) =J fgN-1dV. Clearly, operators 4, B, C and D are all densely defined
¢

on this K. Furtohermore, it follows from (A 3) and (A4) that operators N.B and
— N.D are both symmetric and positive definite. Let us assume 4 ## 0. Then, for
every f and fin 7 which are not annihilated by 4, we have

G4t = [ . dny-av - | o@-ydnar = -| hany-ar.

26 Vol. 346. A.
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(We have used the last of the equations (A 3) and (A 6).) Thus, on the subspace S, of
K which consists of all f’s with Af # 0, A is a negative definite, symmetric operator.
Similarly, by using (A 6), the last of the equations (A 3) and (A 1), it is easy to show
that (— N .D).A?is a positive definite symmetric operator. Thus, on 8, we have
symmetric operators (— N .D), A2and (—N.D).A? with (— N .D) positive definite,
A2 negative definite and (—N.D). 42 positive definite. This implies that S, must
be empty. Thus, 4 = 0, and consequently, C = N-TAN = 0.

Next, we consider B and D. From the second of the equations (A 5) it follows that
D = — N-1BN—16), while from the first of (A1) wehave D.B = B.D = — I. Using the
fact that @ is an essentially self-adjoint positive-definite operator” on K, one obtains
D = — N-10%, where O% is itself a positive-definite, self-adjoint operator, the posi-
tive square-root of @ on K. Finally, since B.D = D.B = — I, we have B = O-iN.

Thus J(¢,7) = (@-*Nm, — N-10}g) is the only complex structure on ¥ which
satisfies the conditions of the theorem.

Finally, we remark that, if (4, g,;,) happens to be a static space-time, £, a static
surface, NV the norm of the static Killing field, then the complex structure J induced
on V by the above Jon? (under the natural isomorphism between ¥ and V) is the
same as the one defined in terms of the standard positive and negative frequency
decompositions.
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NoTESs

1 We shall assume throughout that the Cauchy problem for the classical Klein—Gordon
equation is well posed on the given space—time. More precisely, we shall assume that the space—
time admits a space-like Cauchy surface and that every smooth initial data set with compact
support on such a Cauchy surface evolves to a (everywhere) smooth solution.

% A complex structure J on a real vector space V is a linear operator on V satisfying J? = —I.

3 That is to say, space—times which admit a Killing vector which is everywhere time-like and
hypersurface orthogonal.

4 That is to say, space-times which admit a Killing vector which is everywhere time-like.

5 In this section the space-time is allowed to be arbitrary. The only restriction we shall
make is that the Cauchy problem for the classical Klein—Gordon equation be well posed.



PROCEEDINGS THE ROYAL

SOCIETY

OF

ROCEEDINGS THE ROYAL

SOCIETY

OF

Downloaded from rspa.royalsocietypublishing.org

Quantum fields in curved space—times 393

8 That is to say, solutions which are smooth and induce, on any space-like Cauchy surface,
initial data sets of compact support. The assumption about compact support is just for mathe-
matical convenience and may be replaced by the requirement that the data sets go to zero
sufficiently fast (as we approach spatial infinity) for various integrals which arise in this
discussion to converge.

7 The phrase ‘ impose the condition 4 = 0 on the given *-algebra’ will mean ° consider the
x-ideal generated by 4 and take the quotient of the given *-algebra by this ideal’.

8 Since the integrand is divergence-free and since it vanishes at spatial infinity, the integral
is independent of the particular choice of #, made in its evaluation.

% A x-representation of a #-algebra .27 is a map A from .27 into the *-algebra of operators
defined on a Hilbert space F satisfying A(A+kB) = A(4)+kA(B): A(AB) = A(4) A(B);
and A(A*) is the adjoint of A(4) on % ; for all A and B in &7 and for all complex numbers %.

10 Actually, this requirement follows from the other two if we demand that the %-representa-
tion be faithful. Although the faithfulness requirement is perhaps better motivated from a
physical viewpoint, we have chosen to impose in its stead the condition on the ‘size’ of H#
because it is this condition which will enter directly in the subsequent discussion.

11 Qur notation is the following: @ is that element of the one-particle Hilbert space 3¢
which is defined by the classical solution @ of the Klein—-Gordon equation.

12 That is to say (V,J, 2,7) is a Kéhler space.

13 Tf J ¢ changes in time’ creation and annihilation operators ‘ get mixed’ as time evolves.
This ¢ mixing’ is often described in terms of a non-trivial Bogoliubov transformation (see, for
example, De Witt 1973).

14 The equation H P! = — J(Z, ®)! may also be regarded as Schrodinger’s evolution equation
on the Hilbert space .

15 An alternative proofis given in § 3 in the slightly more general context of stationary space—
times.

16 Thus, alternatively, we could have proceeded as follows: instead of the energy requirement,
we could have required only that { @, H®') be real, shown that there exists a unique complex
structure J (compatible with the symplectic structure 2) for which this requirement is satisfied,
and then shown, at the end, that the energy requirement is automatically satisfied by this J.

17 From the definition of @ it follows, directly, that it is a (densely defined) symmetric,
positive-definite operator bounded below. Hence, it admits a maximal self-adjoint extension,
namely the Friedrichs extension (see, forexample, Gelfand & Shilov 1967%7). Operators @% and ©—%
are defined by using the spectral decomposition of ® (see for example, Akhiezer & Glazman1963).

18 Consider the case when (M, g4, 1) is a static space-time. In this case, we can decompose
any given solution into normal modes. Then, .#; multiplies each normal mode of frequency
by iw and ©-t divides each such mode by |w|. Thus, ©®-1%, multiplies the positive frequency
part of every real solution @ by i and the negative frequency part by (—1i); i.e. @3.Z; is indeed
the standard complex structure.

19 Since O is a positive definite self-adjoint operator which commutes with %, it follows that
©-1% also commutes with .%,. Hence, J2 = O3, 0-1.%, = 0%, %, = —I. Thus, J isindeed a
complex structure. Next, since (9D, @) = AP,Z, D) for all ® and & in V, we have,

(D,0-18) = AD,ZL,0-2) = Q1 J(D, D).

Thus, 21 J is a positive definite metric on V.

20 Tn this case, the norm, (@, @) induced by the inner product will no longer be positive
definite and hence our construction of J will not go through.

21 The following argument due to Friedman (1g974) indicates that such instabilities will
occur quite generically in space—times which have ergospheres but no horizon. Consider an
initial data set with support inside the ergosphere and with negative total energy. As time
evolves, the field will escape out of the ergosphere. (For example, if it is a zero rest mass field,
it will escape to.#). The part of the field which escapes carries with it a positive energy. Since the
total energy is conserved, the contribution to the energy from within the ergosphere would
become more and more negative, i.e. in the ergosphere, the field would grow unboundedly in
time.
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22 Note that we are considering here a generic situation. In particular space—times, e.g. in the
Kerr solutions, it may turn out that the Cauchy development (of the test-fields) is regular and
one might then be able to invent ways to describe quantum fields on such space-times.

28 Several of these mathematical results were briefly reported elsewhere. (Ashtekar &
Magnon 1975).

24 Alternatively, we can introduce a scalar field ¢ with V,¢ everywhere time-like, and set
£o = — NV, where N = (V% V,t)~% Then, N£V,¢ = 1 and hence we can identify N§¢ with
ofet. Thus, effectively, here we have set the lapse field equal to IV and the shift field equal to
zero. We see no essential difficulty in the incorporation of the non-zero shifts, i.e. in allowing §*
to be non-hypersurface orthogonal. What we really need here is only a foliation of space-time.

25 Note that, as in the static case, the vector field which appears in the integrand is 9/o¢
(= NE®) rather than the unit field N-19/ot (= £°). B(£2,t) is the natural candidate for the
classical energy because, when regarded as a function on phase-space, it coincides with the
classical Hamiltonian, i.e., with the generator of evolution with respect to the time-
parameter defined by £2.

26 In the 2-component wave-function formalism (see, for example, Unruh 1974a) this
definition of H(£?,t,) emerges as the most natural one.

27 More generally, any transformation on &/ which is induced by a linear canonical trans-
formation on the classical phase-space, is an automorphism (Segal 1967).

28 Even if it should turn out that the expectation values of the rate of change of the total-
number operator are not necessarily finite, it would not be very disturbing: such a pathology
would probably have its origin in our ‘ external field approximation’ (i.e. in our insistence of
keeping the background geometry fixed), and would therefore disappear when this approxima-
tion is removed.

29 These operators appear as an infinite convergent series of (finite) products of field opera-
tors. (Thus, they are elements of an appropriate completion of &/ and not of &7 itself.) The
question is if the evolution rule respects the topology on &7 in which the relevant sum converges.

3¢ Thus, in particular, if in Minkowski space, we choose a field of observers which is non-
inertial only in some compact region, then the prediction of the framework discussed in §5 is
that, although these observers would see, locally, particles being spontaneously created and
annihilated in that region, they would see no net particle production.



